
Фатеева Екатерина Игоревна

МАТЕМАТИКА

Дидактический материал для подготовки учащихся 10-11 классов к ЕГЭ

СОДЕРЖАНИЕ

1	Справочный материал для решения геометрических задач профильного уровня по	5
	геометрии	
2	Показательные и логарифмические уравнения и неравенства	8
3	Производная и ее применение	21
4	Планиметрия	31
5	Стереометрия	38
6	Экономические задачи	43
7	Задачи с параметрами	48
8	Список литературы и интернет ресурсов	55

Пояснительная записка

Данный дидактический материал предназначен ДЛЯ организации систематической подготовки учащихся 10-11 классов Единому Экзамену (ЕГЭ) по математике. Он включает в себя Государственному теоретический минимум, примеры решения задач различной сложности, задачи для решения, ответы и решения. Материал разработан в самостоятельного соответствии с Федеральным государственным образовательным стандартом (ФГОС) и кодификатором ЕГЭ по математике.

Цели:

- •Обеспечение полноты и структурированности знаний, умений и навыков, необходимых для успешной сдачи ЕГЭ по математике.
- Развитие математической культуры, логического мышления, навыков решения задач различной сложности.
- Подготовка к выполнению всех типов заданий ЕГЭ по математике (задания с кратким ответом и задания с развернутым ответом).
- Формирование уверенности в собственных силах и повышение мотивации к изучению математики.
 - Отработка умений применять теоретические знания на практике.

Ценность:

- Системность: Материал структурирован по разделам, соответствующим тематическим блокам $Е\Gamma$ Э, что обеспечивает последовательность и логичность обучения.
- Актуальность: Задания соответствуют современным требованиям ЕГЭ, включая изменения в формате и содержании экзамена. Используются типы задач, встречающиеся на реальных ЕГЭ последних лет.
- Дифференцированность: Разноуровневые задачи позволяют учитывать индивидуальные особенности учащихся, создавая условия для успешного освоения материала каждым учеником.
- Практическая направленность: Материал ориентирован на развитие практических навыков решения задач, необходимых для успешной сдачи ЕГЭ.
- Контроль и самоконтроль: Наличие ответов и решений позволяет учащимся самостоятельно оценивать свой прогресс и выявлять пробелы в знаниях.
- Углубление: Задачи повышенной сложности способствуют углублению знаний и развитию исследовательских навыков.
- Экономия времени: Материал отобран таким образом, чтобы максимально эффективно использовать время, отведенное на подготовку к ЕГЭ.
- Доступность: Материал изложен простым и понятным языком, что облегчает его усвоение учащимися.

Дидактический материал содержит:

Справочные материалы Примеры решения задач Задания для самостоятельного решения (разноуровневые)

I. Справочный материал для решения геометрических задач профильного уровня по геометрии

Что находить	Как находить					
	• Синус ($\sin \alpha$): Отношение противолежащего катета к гипотенузе. $\sin \alpha = a/c$					
Тригонометрические	• Косинус (сов α): Отношение прилежащего катета к гипотенузе. сов $\alpha = b/c$					
функции острого		а): Отношение проти				
угла в	$\alpha/\cos\alpha$,·		,		,,- 18
прямоугольном		etg α): Отношение пр	ипежаще	его кате	та к противоле:	κ amemy cto $\alpha = b/a$
треугольнике	$=\cos \alpha / \sin \alpha$	es with a momentum mp	плежаще	oro Rare	Tu k iipotiiboiio	Rumomy. etg w ora
треугольнике		(х) – ось косинусов.	$\cos \alpha = \mathbf{v}$	-коорпі	AHATA TOUKK HA 6	тининной
Тригонометрические		оответствующей углу		-коорді	пата точки па с	дини-шои
функции угла		(y) – ось синусов. sin		2022		ининой
поворота (единичная	_	(у) – ось синусов. sn оответствующей углу	-	ордин.	ата точки на сдр	иничнои
окружность):		$a = \sin \alpha / \cos \alpha$ (oπper		I 000 01 :	4 0)	
окружность).	_	` .			/	
2		$tg \alpha = \cos \alpha / \sin \alpha (or$	тределен	при ѕп	$(\alpha \neq 0)$	
Значения	Угол (градусы)	Угол (радианы)	sin α	cos a	tg α	ctg a
тригонометрических	0°	0	0	1	0	Не существует
функций для	30°	п/6	1/2	√3/2	√3/3	√3
некоторых углов	45°	п/4	√2/2	√2/2	1	1
	60°	п/3	√3/2	1/2	√3	√3/3
	90°	π/2	1	0	Не существует	0
	180°	П	0	-1	0	Не существует
	270°	3п/2	-1	0	Не существует	0
	360°	2π	0	1	0	Не существует
Основные	• $\sin^2 \alpha + \cos^2$	$\alpha = 1$ (Основное триг	онометр	ическое	е тождество)	
тригонометрические	• $\operatorname{tg} \alpha = \sin \alpha /$	cos a				
тождества	• ctg $\alpha = \cos \alpha$	/ sin α				
	• $\operatorname{tg} \alpha \times \operatorname{ctg} \alpha = 1$					
	• $1 + tg^2 \alpha = 1 / \cos^2 \alpha$					
	• $1 + \operatorname{ctg}^2 \alpha = 1 / \sin^2 \alpha$					
Формулы	• Запомните і					
приведения		прибавляется π/2 ил	и 3π/2, то	э функі	ия меняется на	кофункцию (sin на
	cos, tg на ctg и			17	,	TJ(
	• Если к углу прибавляется π или 2π , то функция не меняется.					
		*				
	• Знак определяется по исходной функции, считая угол острым Примеры:					
	• $\sin (\pi/2 + \alpha)$	= cos a				
	• $\cos(\pi - \alpha) = -$					
	• $tg(3\pi/2 - \alpha) =$					
Формулы сложения	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\sin \alpha \cos \beta + \cos \alpha \sin \beta$	R			
Формулы сложения			-			
		in $\alpha \cos \beta - \cos \alpha \sin \beta$				
		$\cos \alpha \cos \beta - \sin \alpha \sin \alpha$				
		$\cos \alpha \cos \beta + \sin \alpha \sin \alpha$				
• $tg(\alpha + \beta) = (tg \alpha + tg \beta) / (1 - tg \alpha tg \beta)$ • $tg(\alpha - \beta) = (tg \alpha - tg \beta) / (1 + tg \alpha tg \beta)$						
- v			<u>gβ)</u>			
Формулы двойного	• $\sin 2\alpha = 2 \sin \alpha$					
угла		$\alpha - \sin^2 \alpha = 2 \cos^2 \alpha -$	1 = 1 - 2	$\sin^2 \alpha$		
	• $\operatorname{tg} 2\alpha = 2 \operatorname{tg} \alpha / (1 - \operatorname{tg}^2 \alpha)$					
Формулы	' /	$\sqrt{(1-\cos\alpha)/2}$				
половинного угла	• $\cos(\alpha/2) = \pm$	$\sqrt{((1+\cos\alpha)/2)}$				

	• $\operatorname{tg}(\alpha/2) = \pm \sqrt{(1 - \cos \alpha) / (1 + \cos \alpha)} = \sin \alpha / (1 + \cos \alpha) = (1 - \cos \alpha) / \sin \alpha$ (3HaK)
	выбирается в зависимости от четверти, в которой находится угол α/2)
Решение	• $\sin x = a$, где $ a \le 1 => x = (-1)^n \arcsin a + \pi n$, $n \in \mathbb{Z}$
простейших	• $\cos x = a$, где $ a \le 1 => x = \pm \arccos a + 2\pi n$, $n \in \mathbb{Z}$
тригонометрических	• $\operatorname{tg} x = a \Rightarrow x = \operatorname{arctg} a + \pi n, n \in \mathbb{Z}$
уравнений	• $\operatorname{ctg} x = a \Rightarrow x = \operatorname{arcctg} a + \pi n, n \in \mathbb{Z}$

Примеры решения задач:

1. Упрощение тригонометрического выражения:

Задача: Упростите выражение: $(\sin \alpha + \cos \alpha)^2 + (\sin \alpha - \cos \alpha)^2$

Алгоритм:

- 1. Раскрыть скобки: используем формулу квадрата суммы и разности.
- 2. Применить основное тригонометрическое тождество: $\sin^2\alpha + \cos^2\alpha = 1$
- 3. Упростить выражение: сложить подобные члены.

Решение:

 $(\sin\alpha + \cos\alpha)^2 + (\sin\alpha - \cos\alpha)^2 = (\sin^2\alpha + 2\sin\alpha\cos\alpha + \cos^2\alpha) + (\sin^2\alpha - 2\sin\alpha\cos\alpha + \cos^2\alpha)$ $= \sin^2\alpha + \cos^2\alpha + \sin^2\alpha + \cos^2\alpha = 1 + 1 = 2$

Ответ: 2

2. Решение тригонометрического уравнения:

Задача: решите уравнение: $2 \sin x - 1 = 0$

Алгоритм:

- 1. Привести к простейшему виду: выразить sin x.
- 2. Найти общее решение: использовать формулу для решения уравнения $\sin x = a$.
- 3. Записать ответ.

Решение:

- 1. $2 \sin x = 1 \Rightarrow \sin x = 1/2$
- 2. $x = (-1)^n \arcsin(1/2) + \pi n$, $n \in Z \Longrightarrow x = (-1)^n \pi/6 + \pi n$, $n \in Z$

Ответ: $x = (-1)^n \pi/6 + \pi n, n \in Z$

3. Решение тригонометрического уравнения (более сложного):

Задача: решите уравнение: $\cos 2x + 3 \sin x = 2$

Алгоритм:

- 1. Выразить $\cos 2x$ через $\sin x$: используем формулу $\cos 2\alpha = 1$ $2\sin^2\alpha$
- 2. Привести уравнение к квадратному относительно sin x: сделать замену переменной.
- 3. Решить квадратное уравнение: найти корни относительно sin x.
- 4. Решить простейшие тригонометрические уравнения: найти х для каждого корня sin х.
- 5. Записать ответ.

Решение:

- 1. 1 $2 \sin^2 x + 3 \sin x = 2$
- 2. $2 \sin^2 x 3 \sin x + 1 = 0$
- Пусть $\sin x = t$, тогда $2t^2 3t + 1 = 0$
- 3. $D = (-3)^2 4 \times 2 \times 1 = 9 8 = 1$
 - $t_1 = (3 + \sqrt{1}) / (2 \times 2) = 1$
 - $t_2 = (3 \sqrt{1}) / (2 \times 2) = 1/2$
- $4. \times \sin x = 1 => x = \pi/2 + 2\pi n, n \in Z$

• $\sin x = 1/2 => x = (-1)^n \pi/6 + \pi n, n \in Z$

Otbet: $x = \pi/2 + 2\pi n$, $x = (-1)^n \pi/6 + \pi n$, $n \in \mathbb{Z}$

4. Решение тригонометрического неравенства:

Задача: решите неравенство: $\sin x > 1/2$

Алгоритм:

- 1. Найти точки, где $\sin x = 1/2$: решить уравнение $\sin x = 1/2$.
- 2. Изобразить единичную окружность: отметить полученные точки на окружности.
- 3. Определить промежутки, где sin x> 1/2: выделить дугу на окружности, соответствующую значениям sin x больше 1/2.
- 4. Записать ответ в виде промежутка (или объединения промежутков).

Решение:

- 1. $\sin x = 1/2 \Rightarrow x = \pi/6 + 2\pi n, x = 5\pi/6 + 2\pi n, n \in \mathbb{Z}$
- 2. (Изобразить единичную окружность с отмеченными точками $\pi/6$ и $5\pi/6$
- 3. $\pi/6 + 2\pi n < x < 5\pi/6 + 2\pi n$, $n \in \mathbb{Z}$

Otbet: $\pi/6 + 2\pi n < x < 5\pi/6 + 2\pi n$, $n \in \mathbb{Z}$

Задачи для самостоятельного решения:

(Уровень 1: Простые)

- 1. Упростите выражение: $\cos^2 \alpha + \sin^2 \alpha + tg^2 \alpha$
- 2. Найдите значение выражения: $2 \sin (\pi/6) + 3 \cos (\pi/3)$ 3. Решите уравнение: $\cos x = \sqrt{3/2}$

(Уровень 1: Простой)

- 1. Упростите выражение: $(\sin \alpha + \cos \alpha)^2 \sin 2\alpha$
- 2. Найдите значение выражения: $\sin (\alpha + \beta)$, если $\sin \alpha = 3/5$, $\cos \beta = 5/13$, α и β острые углы.
- 3. Решите уравнение: $2\cos^2 x 3\cos x + 1 = 0$

(Уровень 2: Сложный)

- 1. Упростите выражение: (ctg α tg α) / (sin α cos α)
- 2. Докажите тождество: $\sin 3\alpha = 3 \sin \alpha 4 \sin^3 \alpha$
- 3. Решите уравнение: $\sin^2 x + \cos x = 1$
- 4. Решите неравенство: $\cos x < -\sqrt{2/2}$

(Уровень 2: Сложный)

- 1. При каких значениях параметра а уравнение $\sin x = a$ имеет решения?
- 2. Найдите все значения параметра a, при которых уравнение $\cos 2x + a \sin x = 0$ имеет ровно два решения на отрезке $[0, \pi]$.

II. Показательные и логарифмические уравнения и неравенства

Тема	Свойства и определения
	Определение:
	* Формула: $y = a^x$, где $a > 0$, $a \ne 1$.
	* Основание а: что это, ограничения.
	* Показатель х: Область определения.
	Свойства:
Показательная Функция	* Область определения: $x \in \mathbb{R}$ (все
	действительные числа).
	* Область значений: $y ∈ (0, +∞)$.
	* Монотонность:
	* Возрастающая при a> 1.
	* Убывающая при 0 <a <1.<="" td="">
	* График функции:
	* Асимптота: Ось Ох (y = 0).
	* Пересечение с осью Оу: (0, 1).
	$*$ $a^0 = 1$ для любого a.
	$* a^1 = a$ для любого a.
	* Свойства степеней: $a^{(x+y)} = a^x * a^y$,
	$A^{(x-y)} = a^x$: a^y , $(a^x)^y = a^{(xy)}$.
	Определение:
	* Формула: $y = log_a(x)$, где $a > 0$, $a \ne 1$, $x > 0$.
	(Читается: "Логарифм х по основанию а").
	* Основание а: что это, ограничения.
	* Аргумент х: Ограничение х> 0.
	* Связь с показательной функцией: $\log_a(x) = y <=>$
	$a^y = x$.
Логарифмическая функция	Свойства:
	* Область определения: $x \in (0, +\infty)$.
	* Область значений: $y \in \mathbb{R}$ (все действительные
	числа).
	* Монотонность:
	* Возрастающая при а> 1.
	* Убывающая при 0 <a <1.<="" td="">
	* График функции:
	* Асимптота: Ось Оу (x = 0).
	* Пересечение с осью Ох: (1, 0).
	$* log_a(1) = 0$ для любого а.
	$* log_a(a) = 1$ для любого a .
	$\log_a(x) = \log_a(x) + \log_a(y)$ (Логарифм
	$\log_{a}(xy) = \log_{a}(x) + \log_{a}(y)$ (логарифм произведения).
Основные логарифмические тождества	* $\log_a(x/y) = \log_a(x) - \log_a(y)$ (Логарифм частного).
	$\log_a(x)$ у = $\log_a(x)$ нода(у) (тогарифи истиго).
	$\log_a(x) = p \log_a(x)$ (Погарифия степени). * $\log_a(b) = \log_c(b) / \log_c(a)$ (Переход к новому
	$\log_{a}(\theta) = \log_{e}(\theta) / \log_{e}(\alpha)$ (Переход к повому основанию).
	* $a^{(\log_a x)} = x$ (Основное логарифмическое
	тождество).
	Основные методы решения:
	* Приведение к одному основанию: $a^{f(x)} = a^{g(x)} = >$
	Приведение к одному основанию. $a = a^{3/2} = f(x) = g(x)$.
	$1(\Lambda) = \beta(\Lambda)$.

Показательные уравнения	* Замена переменной: Введение новой переменной для упрощения уравнения (например, t = a ^x). * Разложение на множители: Вынесение общего множителя или использование формул сокращенного умножения. * Графический метод: Решение уравнения путём построения графиков функций в левой и правой частях уравнения и нахождения точек их пересечения. * Особые случаи: * Уравнения, содержащие сумму или разность показательных функций. * Уравнения, требующие предварительных преобразований (например, извлечение корня).
Логарифмические Уравнения	Основные методы решения: * Приведение к одному основанию: $\log_a(f(x)) = \log_a(g(x)) => f(x) = g(x)$ (с учётом ОДЗ). * Потенцирование: $\log_a(f(x)) = b => f(x) = a^b$ (с учётом ОДЗ). * Замена переменной: Введение новой переменной для упрощения уравнения (например, $t = \log_a(x)$). * Использование свойств логарифмов: Упрощение уравнения с помощью логарифмических тождеств. Область допустимых значений (ОДЗ): * Аргумент логарифма должен быть строго больше нуля: $f(x) > 0$ для $\log_a(f(x))$. * Основание логарифма должно быть положительным и не равным единице: $a > 0$, $a ≠ 1$ для $\log_a(f(x))$. Проверка корней: Обязательная проверка найденных корней на принадлежность ОДЗ. Особые случаи: * Уравнения, содержащие логарифмы с переменным основанием. * Уравнения, требующие комбинирования различных методов решения.
Показательные неравенства	Основные методы решения: * Приведение к одному основанию: * Если а > 1: а ^{f(x)} > а ^{g(x)} => f(x) > g(x). * Если 0 <a <1:="" a<sup="">f(x) > a^{g(x)} => f(x) <g(x) (изменение="" *="" f(x)="" введение="" виду="" для="" замена="" знака="" интервалов:="" к="" метод="" неравенства="" неравенства).="" неравенства.="" новой="" переменной="" переменной:="" после="" приведения="" применяется="" упрощения=""> 0 или f(x) <0. Особые случаи: * Неравенства, содержащие сумму или разность показательных функций. * Неравенства, требующие предварительных преобразований. Основные методы решения: * Приведение к одному основанию:</g(x)>

	* Form $a > 1 \cdot \log (f(y)) > \log (g(y)) = > f(y) > g(y) / a$
	* Если а> 1: $\log_a(f(x)) > \log_a(g(x)) => f(x) > g(x)$ (с
	учётом ОДЗ).
	* Если $0 < a < 1$: $\log_a(f(x)) > \log_a(g(x)) = > f(x) < g(x)$ (с
	учётом ОДЗ и изменением знака неравенства).
	Потенцирование:
	* Если $a > 1$: $log_a(f(x)) > b => f(x) > a^b$ (с учётом
	ОДЗ).
	* Если $0 < a < 1$: $\log_a(f(x)) > b = > f(x) < a^b$ (с
	учётом ОДЗ и изменением знака неравенства).
Логарифмические неравенства	Замена переменной:
	Введение новой переменной для упрощения
	неравенства.
	Метод интервалов:
	Применяется после приведения неравенства к виду
	f(x) > 0 или $f(x) < 0$.
	Область допустимых значений (ОДЗ):
	Важность учета ОДЗ такая же, как и для
	уравнений.
	Особые случаи:
	* Неравенства, содержащие логарифмы с
	переменным основанием.
	* Неравенства, требующие комбинирования
	различных методов решения.
	Общая идея:
	Замена сложных выражений, содержащих
	показательные и логарифмические функции, на
	более простые рациональные выражения,
	сохраняющие знак исходного выражения. Это
	позволяет свести решение сложных неравенств к
	решению рациональных неравенств.
	Основные формулы рационализации:
Метод рационализации	$* a^{f(x)}$ - $a^{g(x)}$ имеет тот же знак, что и (a - 1)(f(x) -g(x)).
	$* log_a(f(x)) - log_a(g(x))$ имеет тот же знак, что и
	(a - 1) (f(x) - g(x)), при условии $f(x) > 0$ и $g(x) > 0$.
	$* \log_f(x)(g(x)) - \log_f(x)(h(x))$ имеет тот же знак, что и
	(f(x) - 1)(g(x) - h(x)), при условиях $f(x) > 0$, $f(x) != 1$,
	g(x) > 0, h(x) > 0.
	Применение:
	При решении сложных показательных и
	логарифмических неравенств.
	Важно:
	Строгое соблюдение ОДЗ!
	1 1 11 11

Примеры решения задач

Показательные уравнения:

• Пример 1: Простое уравнение: $2^{(x+1)} = 8$.

Решение:

Представим правую часть уравнения как степень с основанием 2: $8 = 2^3$.

Тогда уравнение принимает вид: $2^{(x+1)} = 2^3$.

Поскольку основания равны, приравниваем показатели: x + 1 = 3.

Решаем полученное линейное уравнение: x = 3 - 1.

Ответ: x = 2.

• Пример 2: Уравнение с заменой переменной: $4^{(x-6)} * 2^x + 8 = 0$.

Решение:

Заметим, что $4^x = (2^2)^x = (2^x)^2$.

Введем замену переменной: $t = 2^x$. (Обязательно: t > 0, так как показательная функция всегда положительна).

Подставим t в уравнение: t^2 - 6t + 8 = 0.

Решаем полученное квадратное уравнение. Можно использовать теорему Виета или дискриминант.

Дискриминант: $D = (-6)^2 - 4 \times 1 \times 8 = 36 - 32 = 4$.

Корни:
$$t = (6 + \sqrt{4}) / 2 = (6 + 2) / 2 = 4$$
 и $t = 2 = (6 - \sqrt{4}) / 2 = (6 - 2) / 2 = 2$.

Возвращаемся к исходной переменной х:

$$2^{x} = 4 = 2^{2} \Rightarrow x = 2.$$

$$2^x = 2 = 2^1 \Longrightarrow x = 1.$$

Ответ: x = 1, x = 2.

• Пример 3: Уравнение, приводящееся к квадратному: $9^x - 4 * 3^x + 3 = 0$.

Решение:

Заметим, что $9^x = (3^2)^x = (3^x)^2$.

Введем замену переменной: $t = 3^x$. (Обязательно: t > 0).

Подставим t в уравнение: $t^2 - 4t + 3 = 0$.

Решаем полученное квадратное уравнение.

По теореме Виета: $t_1 + t_2 = 4$, $t_1 * t_2 = 3$. Корни: $t_1 = 3$, $t_2 = 1$.

Возвращаемся к исходной переменной х:

$$3^x = 3 = 3^1 \Rightarrow x = 1.$$

$$3^x = 1 = 3^0 = x = 0.$$

Ответ:
$$x = 0$$
, $x = 1$.

• Пример 4: более сложное уравнение: $3^{(2x+1)}$ - $10 * 3^x + 3 = 0$.

Решение:

Преобразуем первый член: $3^{(2x+1)} = 3^{(2x)} * 3^1 = 3 * (3^x)^2$.

Введем замену переменной: $t = 3^x$. (Обязательно: t > 0).

Подставим t в уравнение: $3t^2 - 10t + 3 = 0$.

Решаем полученное квадратное уравнение.

Дискриминант: $D = (-10)^2 - 4 \times 3 \times 3 = 100 - 36 = 64$.

Корни:
$$t_1 = (10 + \sqrt{64}) / (2 * 3) = (10 + 8) / 6 = 3$$

 $t_2 = (10 - \sqrt{64}) / (2 * 3) = (10 - 8) / 6 = 1/3.$

Возвращаемся к исходной переменной х:

$$3^{x} = 3 = 3^{1} \Rightarrow x = 1.$$

 $3^{x} = 1/3 = 3^{-1} \Rightarrow x = -1.$

Omeem: x = -1, x = 1.

В каждом решении я указываю на необходимость проверки условия t > 0 для введенной переменной, хотя в этих конкретных примерах оба корня t удовлетворяли этому условию. Это важный момент, который нельзя забывать при решении показательных уравнений с заменой переменной.

Логарифмические уравнения

• Пример 1: Простое уравнение: $log_2(x) = 3$.

Решение:

Потенцируем обе части уравнения по основанию 2: $2^{(\log_2 x)} = 2^3$.

Используем основное логарифмическое тождество: $x = 2^3$.

Вычисляем: x = 8.

ОДЗ: x > 0. Корень x = 8 удовлетворяет ОДЗ.

Ответ: x = 8.

• Пример 2: Уравнение с использованием свойств логарифмов: $log_3(x) + log_3(x-8) = 2$. (Обязательно показать проверку корней на ОДЗ).

Решение:

ОД3:

x > 0.

$$x - 8 > 0 = x > 8$$
.

Общая ОДЗ: x> 8.

Используем свойство логарифма суммы: $log_3(x(x-8)) = 2$.

Потенцируем обе части уравнения по основанию 3: $3^{(\log_3 x(x-8))} = 3^2$.

Используем основное логарифмическое тождество: x(x-8) = 9.

Раскрываем скобки и приводим к квадратному уравнению: $x^2 - 8x - 9 = 0$.

Решаем квадратное уравнение.

По теореме Виета: $x_1 + x_2 = 8$, $x_1 * x_1 = -9$.

Корни: $x_1 = 9$, $x_2 = -1$.

Проверка корней на ОДЗ:

 $X_1 = 9: 9 > 8$ (удовлетворяет ОДЗ).

 $X_2 = -1: -1 > 8$ (не удовлетворяет ОДЗ).

Ответ: x = 9.

• Пример 3: Уравнение с заменой переменной: $(\log_2(x))^2 - 3 * \log_2(x) + 2 = 0$.

Решение:

OД3: x > 0.

Введем замену переменной: $t = log_2(x)$.

Подставим t в уравнение: $t^2 - 3t + 2 = 0$.

Решаем квадратное уравнение.

```
По теореме Виета: t_1 + t_2 = 3, t_1 * t_2 = 2.
  Корни: t_1 = 2, t_2 = 1.
  Возвращаемся к исходной переменной х:
      Log_2(x) = 2 \Rightarrow x = 2^2 = 4.
      Log_2(x) = 1 \Longrightarrow x = 2^1 = 2.
  Проверка корней на ОДЗ:
      x = 4: 4 > 0 (удовлетворяет ОДЗ).
      x = 2: 2 > 0 (удовлетворяет ОДЗ).
  Omeem: x = 2, x = 4.
• Пример 4: Уравнение с переменным основанием: log_x(9) = 2.
Решение:
  ОДЗ:
      x > 0.
      x \neq 1.
  Перепишем уравнение в показательной форме: x^2 = 9.
  Решаем уравнение: x = \pm 3.
  Проверка корней на ОДЗ:
      x = 3: 3 > 0 и 3 \neq 1 (удовлетворяет ОДЗ).
      x = -3: -3 > 0 (не удовлетворяет ОДЗ).
  Ответ: x = 3.
 Пример 5: Уравнение, требующее потенцирования: log_2(x^2 - 5x + 6) = 1.
Решение:
  OД3: x^2 - 5x + 6 > 0.
  Решаем неравенство x^2 - 5x + 6 > 0:
      Находим корни квадратного трехчлена: x^2 - 5x + 6 = 0.
По теореме Виета: x_1 + x_2 = 5, x_1 * x_2 = 6.
Корни: x_1 = 2, x_2 = 3.
      Неравенство выполняется при x < 2 или x > 3. То есть, ОДЗ: x \in (-\infty, 2) \cup (3, +\infty).
  Потенцируем обе части уравнения по основанию 2: 2^{(\log 2(x^2 - 5x + 6))} = 2^1.
  Используем основное логарифмическое тождество: x^2 - 5x + 6 = 2.
  Приводим к квадратному уравнению: x^2 - 5x + 4 = 0.
  Решаем квадратное уравнение.
По теореме Виета: x_1 + x_2 = 5, x_1 * x_2 = 4.
Корни: x_1 = 4, x_2 = 1.
  Проверка корней на ОДЗ:
       x = 4: 4 \in (3, +\infty) (удовлетворяет ОДЗ).
      x = 1: 1 \in (-\infty, 2) (удовлетворяет ОДЗ).
  Omeem: x = 1, x = 4.
```

Важно: помнить, что при решении логарифмических уравнений ОДЗ является критическим этапом, и всегда необходимо проверять полученные корни на соответствие ОДЗ.

Показательные неравенства

Пример 1: Простое неравенство: $3^x > 9$.

Решение:

Представим правую часть неравенства как степень с основанием 3: $9 = 3^2$.

Неравенство принимает вид: $3^x > 3^2$.

Поскольку основание 3> 1, показательная функция возрастает, и мы можем сравнить показатели, сохраняя знак неравенства: x> 2.

Ответ: $x \in (2, +\infty)$

Пример 2: Неравенство с заменой переменной: $4^x - 5 * 2^x + 4 < 0$.

Решение:

Заметим, что $4^x = (2^x)^2$.

Введем замену переменной: $t = 2^x$. (Обязательно: t > 0).

Подставим t в неравенство: $t^2 - 5t + 4 < 0$.

Решаем квадратное неравенство.

Находим корни квадратного трехчлена: $t^2 - 5t + 4 = 0$. По теореме Виета: $t_1 + t_2 = 5$, $t_1 * t_2 = 4$. Корни: $t_1 = 1$, $t_2 = 4$.

Парабола у = t^2 - 5t + 4 направлена ветвями вверх, поэтому неравенство t^2 - 5t + 4 < 0 выполняется между корнями: 1 < t < 4.

Возвращаемся к исходной переменной х:

 $1 < 2^{x} < 4$.

Представим 1 и 4 как степени с основанием 2: $2^0 < 2^x < 2^2$.

Поскольку основание 2 > 1, сравниваем показатели, сохраняя знак неравенства: 0 < x < 2.

Ответ: $x \in (0, 2)$.

Пример 3: Неравенство: $(1/2)^x \le 4$.

Решение:

Представим правую часть неравенства как степень с основанием 1/2: $4 = (1/2)^{(-2)} = 2^2$. Неравенство принимает вид: $(1/2)^x \le (1/2)^{(-2)}$.

Поскольку основание 1/2 < 1, показательная функция убывает, и мы должны изменить знак неравенства при сравнении показателей: $x \ge -2$.

Ответ: $x \in [-2, +\infty)$.

В этих примерах важно помнить о влиянии основания на знак неравенства при переходе к сравнению показателей. Если основание больше 1, знак неравенства сохраняется; если основание между 0 и 1, знак неравенства меняется на противоположный.

Логарифмические неравенства

Пример 1: Простое неравенство: $log_2(x) > 3$. (Не забыть про ОДЗ).

Решение:

OД3: x > 0.

Потенцируем обе части неравенства по основанию 2: $2^{(\log_2(x))} > 2^3$.

Используем основное логарифмическое тождество: $x > 2^3$.

Вычисляем: x > 8.

Проверка на ОДЗ: Так как x > 8, то x > 0 автоматически выполняется.

Omeem: $x \in (8, +\infty)$.

Пример 2: Неравенство: $\log_{(1/3)}(x) < -1$. (Обратить внимание на изменение знака неравенства).

Решение:

OД3: x > 0.

Потенцируем обе части неравенства по основанию 1/3: $(1/3)^{(\log_{1/3}(x))} > (1/3)^{(-1)}$. (Знак неравенства меняется, так как 0 < 1/3 < 1).

Используем основное логарифмическое тождество: $x > (1/3)^{(-1)}$.

Вычисляем: x > 3.

Проверка на ОДЗ: Так как x > 3, то x > 0 автоматически выполняется.

Ответ: x ∈ (3, +∞).

Пример 3: Неравенство с использованием свойств логарифмов: $\log_2(x+1) + \log_2(x-1) < 3$. (Обязательно ОДЗ и проверка решений).

Решение:

ОД3:

 $x + 1 > 0 \implies x > -1$.

 $x - 1 > 0 \implies x > 1.$

Общая ОДЗ: x > 1.

Используем свойство логарифма суммы: $\log_2((x+1)(x-1)) < 3$.

Потенцируем обе части неравенства по основанию 2: $2^{(\log 2((x+1)(x-1)))} < 2^3$.

Используем основное логарифмическое тождество: (x+1)(x-1) < 8.

Раскрываем скобки: $x^2 - 1 < 8$.

Приводим к виду: $x^2 - 9 < 0$.

Решаем квадратное неравенство: (x - 3)(x + 3) < 0.

Неравенство выполняется при -3 < x < 3.

Проверка на ОДЗ: Находим пересечение решения неравенства (-3, 3) с ОДЗ (1, $+\infty$). Получаем 1 < x < 3.

Ответ: $x \in (1, 3)$.

Пример 4: Неравенство с переменным основанием: $\log_x(4) > 2$. (Рассмотреть случаи 0 < x < 1 и x > 1).

Решение:

ОД3:

x > 0.

 $x \neq 1$.

Рассматриваем два случая:

Случай 1: 0 < x < 1

Потенцируем обе части неравенства по основанию x: $x^{(\log_x(4))} < x^2$ (знак неравенства меняется, так как 0 < x < 1).

Используем основное логарифмическое тождество: $4 < x^2$.

Решаем неравенство: $x^2 > 4 \implies x < -2$ или x > 2.

Учитываем, что 0 < x < 1. Пересечение с решением неравенства x < -2 или x > 2 даёт пустое множество. В этом случае решений нет.

Случай 2: x > 1

Потенцируем обе части неравенства по основанию $x: x^{(\log_x(4))} > x^2$ (знак неравенства сохраняется, так как x > 1).

Используем основное логарифмическое тождество: $4 > x^2$.

Решаем неравенство: $x^2 < 4 \implies -2 < x < 2$.

Учитываем, что x > 1. Пересечение с решением неравенства -2 < x < 2 даёт 1 < x < 2.

Объединяем решения из обоих случаев (в данном случае решение есть только во втором случае).

Ответ: $x \in (1, 2)$.

Особое внимание следует уделять случаям, когда основание логарифма является переменной. Необходимо рассматривать разные интервалы для основания и учитывать влияние основания на знак неравенства. Также не забывайте про ОДЗ!

Метод рационализации

Пример 1: $(2^{(x+1)} - 4)(x - 3) > 0$.

Решение:

Рационализируем выражение $2^{(x+1)}$ - 4. По формуле $a^{f}(x)$ - $a^{g}(x)$ имеет тот же знак, что и (a - 1)(f(x) - g(x)). Здесь a = 2, f(x) = x + 1, g(x) найдем из $4 = 2^{g}(x)$, то есть g(x) = 2.

Заменяем $2^{(x+1)}$ - 4 на (2-1)(x+1-2)=(1)(x-1)=x-1.

Исходное неравенство заменяем на равносильное: (x - 1)(x - 3) > 0.

Решаем полученное рациональное неравенство методом интервалов:

Находим корни: x = 1, x = 3.

Расставляем корни на числовой прямой и определяем знаки на интервалах:

Выбираем интервалы, где выражение больше нуля: x < 1 или x > 3.

Ombem: $x \in (-\infty, 1) \cup (3, +\infty)$.

Пример 2: $(\log_2(x) - 3)(x + 1) < 0$. (Не забыть про ОДЗ!).

Решение:

OД3: x > 0.

Рационализируем выражение $\log_2(x)$ - 3. Можно представить 3 как $\log_2(8)$. Тогда $\log_2(x)$ - $\log_2(8)$ имеет тот же знак, что и (2 - 1)(x - 8) = x - 8.

Заменяем log_2(x) - 3 на x - 8.

Исходное неравенство заменяем на равносильное: (x - 8)(x + 1) < 0.

Решаем полученное рациональное неравенство методом интервалов:

Находим корни: x = 8, x = -1.

Расставляем корни на числовой прямой и определяем знаки на интервалах:

Выбираем интервалы, где выражение меньше нуля: -1 < x < 8.

Учитываем ОДЗ x > 0. Находим пересечение решения неравенства (-1, 8) с ОДЗ $(0, +\infty)$. Получаем 0 < x < 8.

Ответ: $x \in (0, 8)$.

Пример 3: $\log_x(x)(x^2 - 1) > 1$. (Самый сложный пример, с учетом ОДЗ и нескольких случаев).

Решение:

ОД3:

x > 0.

 $x \neq 1$.

$$x^2 - 1 > 0 \implies x^2 > 1 \implies x < -1$$
 или $x > 1$.

Учитывая ОДЗ, получаем два случая: $x \in (0, 1)$ и $x \in (1, +\infty)$.

Представим 1 как $\log_x(x)$. Тогда неравенство $\log_x(x^2 - 1) > \log_x(x)$ можно рационализировать.

Разность логарифмов $\log_x(x^2 - 1) - \log_x(x)$ имеет тот же знак, что и $(x - 1)(x^2 - 1 - x)$. Заменяем исходное неравенство на равносильное: $(x - 1)(x^2 - x - 1) > 0$.

Находим корни квадратного трехчлена $x^2 - x - 1 = 0$:

$$D = (-1)^2 - 4 \times 1 \times (-1) = 5.$$

$$x_{1,2} = (1 \pm \sqrt{5}) / 2.$$

$$x_1 = (1 - \sqrt{5}) / 2 \approx -0.618.$$

$$x_2 = (1 + \sqrt{5}) / 2 \approx 1.618.$$

Решаем неравенство $(x - 1)(x - (1 - \sqrt{5})/2)(x - (1 + \sqrt{5})/2) > 0$ методом интервалов.

Отмечаем на числовой прямой корни: $(1 - \sqrt{5})/2$, 1, $(1 + \sqrt{5})/2$.

Расставляем знаки:

----(-)----
$$(1-\sqrt{5})/2$$
 ----(+)---- $(1+\sqrt{5})/2$ ----(+)----

Решение неравенства: ($(1-\sqrt{5})/2$, 1) U ($(1+\sqrt{5})/2$, $+\infty$).

Учитываем ОДЗ: $x \in (0, 1) \cup (1, +\infty)$. То есть, нужно найти пересечение полученного решения с ОДЗ.

Пересечение с (0, 1) дает $((1-\sqrt{5})/2, 0)$. Но, изначальная ОДЗ включала в себя условие х > 0, так что $((1-\sqrt{5})/2, 0) -> (0,1)$. Пересечение дает пустой набор решений.

Пересечение с $(1,+\infty)$ дает $((1+\sqrt{5})/2,+\infty)$.

Ответ: $x \in ((1+\sqrt{5})/2, +\infty)$.

Важно:

- метод рационализации позволяет упростить решение, заменяя сложные выражения на более простые.
- строгое соблюдение ОДЗ является обязательным.
- в случае неравенств с переменным основанием логарифма, необходимо рассматривать разные случаи для основания и учитывать влияние основания на знак неравенства.

Эти примеры демонстрируют применение метода рационализации в различных ситуациях. Внимательность к деталям и учет ОДЗ – залог успешного решения таких задач.

Задачи для самостоятельного решения

Уровень А (Простой):

Показательные уравнения (6 задач):

1.
$$2^x = 16$$

2.
$$3^{(x+1)} = 9$$

3.
$$5^{(2x)} = 25$$

4.
$$7^x = 1$$

5.
$$4^{(x-1)} = 1$$

6.
$$2^{(3x-1)} = 8$$

Логарифмические уравнения (6 задач):

1.
$$\log_2(x) = 4$$

2.
$$\log_3(x) = 1$$

3.
$$\log_{5}(x+1) = 0$$

4.
$$\log_{7}(2x-1) = 1$$

5.
$$\log_4(x) = -1$$

6.
$$\log_3(x-2) = 2$$

Показательные неравенства (4 задачи):

1.
$$2^x < 8$$

2.
$$3^x \ge 9$$

3.
$$5^{(x+1)} > 25$$

4.
$$(1/2)^x \le 2$$

Логарифмические неравенства (4 задачи):

1.
$$\log_2(x) < 3$$

2.
$$\log 3(x) \ge 1$$

3.
$$\log_{5}(x+1) > 0$$

4.
$$\log_{-}(1/2)(x) \le -1$$

Ответы:

Показательные уравнения:

1.
$$x = 4$$

2.
$$x = 1$$

3.
$$x = 1$$

4.
$$x = 0$$

5.
$$x = 1$$

6.
$$x = 4/3$$

Логарифмические уравнения:

1.
$$x = 16$$

2.
$$x = 3$$

3.
$$x = 0$$

4.
$$x = 4$$

5.
$$x = 1/4$$

6.
$$x = 11$$

Показательные неравенства:

1.
$$x \in (-\infty, 3)$$

2.
$$x \in [2, +\infty)$$

3.
$$x \in (1, +\infty)$$

4.
$$x \in [-1, +\infty)$$

Логарифмические неравенства:

- 1. $x \in (0, 8)$
- 2. $x \in [3, +\infty)$
- 3. $x \in (0, +\infty)$
- 4. $x \in [2, +\infty)$

Эти задачи предназначены для закрепления основных понятий и навыков решения простых показательных и логарифмических уравнений и неравенств. На этом уровне важно понимать определения, свойства функций и уметь выполнять базовые преобразования.

- Показательные уравнения: (5-7 задач)
- Логарифмические уравнения: (5-7 задач)
- Показательные неравенства: (3-5 задач)
- Логарифмические неравенства: (3-5 задач)

Уровень А (Простой)

Показательные уравнения (6 задач):

- 1. $4^x 5 * 2^x + 4 = 0$
- 2. $9^x 4 * 3^x + 3 = 0$
- 3. $5^{2x+1} 26 * 5^x + 5 = 0$
- 4. $2^{(x+2)} + 4^{(x+1)} = 80$
- 5. $4^{(x)} 3*2^{(x+1)} + 8 = 0$
- 6. $25^x 6*5^x + 5 = 0$

Логарифмические уравнения (6 задач):

- 1. $\log_2^2(x) 3\log_2(x) + 2 = 0$
- 2. $\log_3(x) + \log_3(x-8) = 2$
- 3. $\log_5(x^2 4x + 5) = \log_5(2x-2)$
- 4. $\log_2(x) + \log_4(x) = 3$
- 5. $\log_2(x+2) + \log_2(x-2) = 5$
- 6. $\log_3(x) + \log_9(x) = 3$

Показательные неравенства (4 задачи):

- 1. $4^x 5 * 2^x + 4 < 0$
- 2. $9^x 10*3^x + 9 \le 0$
- 3. $4^{(x)} 2^{(x+1)} 8 > 0$
- 4. $4^x 3*2^(x+1) + 8 \ge 0$

Логарифмические неравенства (4 задачи):

- 1. $\log_2(x+1) < 3$
- 2. $\log_3(x-2) > 2$
- 3. $\log_2(x+1) + \log_2(x-1) \le 3$
- 4. $\log_{1/2}(x^2 3x + 2) > -1$

Ответы:

Показательные уравнения:

- 1. x = 0, x = 2
- 2. x = 0, x = 1
- 3. x = -1, x = 1

4.
$$x = 2$$

5.
$$x = 1, x = 2$$

6.
$$x = 0, x = \log_5(5) = 1$$

Логарифмические уравнения:

1.
$$x = 2$$
, $x = 4$

2.
$$x = 9$$

3.
$$x = 3$$

4.
$$x = 4$$

5.
$$x = 6$$

6.
$$x = 3^{(9/2)}$$

Показательные неравенства:

1.
$$x \in (0, 2)$$

2.
$$x \in [0, 2]$$

3.
$$x \in (2, +\infty)$$

4.
$$x \in (-\infty; 1] U [2; +\infty)$$

Логарифмические неравенства:

1.
$$x \in (-1, 7)$$

2.
$$x \in (11, +\infty)$$

3.
$$x \in (1, 3]$$

4.
$$x \in (0, 1) U(2, 3)$$

Эти задачи требуют более глубокого понимания свойств показательных и логарифмических функций, умения применять замену переменных, учитывать ОДЗ и выполнять преобразования.

Уровень В (Сложный)

Уравнения и неравенства, содержащие модуль (2 задачи):

1.
$$|2^x - 3| = 1$$

2.
$$|\log_2(x) - 1| < 2$$

Уравнения и неравенства, требующие нестандартных подходов (2 задачи):

1.
$$2^x + 2^(-x) = 3$$

2.
$$(\log_2(x))^2 + 1 = 2 * \log_2(x)$$

Использование метода рационализации (2 задачи):

1.
$$(3^x - 9)(x^2 - 4) > 0$$

2.
$$(\log_3(x) - 1)(x - 27) < 0$$

Задачи с параметром (3 задачи):

- 1. Найдите количество решений уравнения $2^x + a = 2x$ в зависимости от параметра a.
- 2. При каких значениях параметра а уравнение $log_2(x) = ax$ имеет единственное решение?
- 3. Исследуйте количество решений неравенства $x^2 2^x \le 0$

Уравнения и неравенства с модулем:

1.
$$|2^x - 3| = 1$$

Ответ: x = 1, x = 2.

2. $|\log_2(x) - 1| < 2$

Ответ: $x \in (1/2, 8)$. (Не забываем об ОДЗ: x > 0)

Уравнения и неравенства, требующие нестандартных подходов:

1. $2^x + 2^(-x) = 3$.

Ombem: $x = log_2((3 + \sqrt{5})/2), x = log_2((3 - \sqrt{5})/2).$

2. $(\log_2(x))^2 + 1 = 2 * \log_2(x)$.

Ответ: x = 2.

Использование метода рационализации:

- 1. $(3^x 9)(x^2 4) > 0$. Omeem: x > -2, $x \neq 2$.
- 2. $(\log_3(x) 1)(x 27) < 0$. Ombem: $x \in (3, 27)$.

Задачи с параметром:

- 1. $2^x + a = 2x$. Требует графического анализа. Количество решений зависит от значения а.
- 2. $\log_2(x) = ax$. Графический анализ. Единственное решение при определенном значении а.
- 3. $x^2 2^x \le 0$. Графический анализ. Решение зависит от пересечения параболы и экспоненты.

В задачах с параметрами, необходимо провести подробное исследование, учитывая различные диапазоны значений параметра.

Рекомендации по использованию:

- Изучите теоретический материал и примеры решений.
- Начните с решения простых задач и постепенно переходите к более сложным.
- При решении задач используйте алгоритмы, представленные выше.
- Проверяйте свои решения с ответами и решениями, представленными в данном материале.
- В случае затруднений обращайтесь к учителю или к другим источникам информации.

Этот дидактический материал поможет вам систематизировать свои знания по тригонометрии, развить навыки решения задач и успешно подготовиться к ЕГЭ (профиль). Удачи!

III. Производная и ее применение

Определение: Предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Формула	Производная
Формула	$f'(x) = \lim (\Delta x \rightarrow 0) [f(x + \Delta x) - f(x)] / \Delta x$
Обозначения	f'(x), y', dy/dx
Геометрический смысл производной	Угловой коэффициент касательной к графику функции в данной точке.
Физический смысл производной	Скорость изменения функции в данной
	точке.

Дифференцируемость	Функция называется дифференцируемой в
	точке, если в этой точке существует
	производная.
Связь дифференцируемости и	Если функция дифференцируема в точке, то
непрерывности	она непрерывна в этой точке. Обратное не
	всегда верно.

Правила дифференцирования

Производная суммы и разности $ (u(x) \pm v(x))' = u'(x) \pm v'(x). $ Производная произведения $ (u(x) * v(x))' = u'(x) * v(x) + u(x) * v'(x). $ Производная частного $ (u(x) / v(x))' = [u'(x) * v(x) - u(x) * v'(x)] / (v(x))' / (v(x)) / (v(x))' / (v(x)) / (v$	Производная константы	(C)' = 0, где C - константа.
Производная произведения	Производная суммы и разности	
Производная частного		
Производная сложной функция $(g(x))' = f'(g(x)) * g'(x)$. Степенная функция $(x^*n)' = n * x^*(n-1)$. Особые случай $(x)' = 1 / (\sqrt{x})! = 1 / (2\sqrt{x}), (1/x)' = -1 / x^*2$. Показательная функция $(a^*x)' = a^*x * \ln(a)$. Особый случай $(e^*x)' = e^*x$. Логарифмическая функция $(\log_a(x))' = 1 / (x * \ln(a))$. Особый случай $(\ln(x))' = 1 / x$ Тригонометрические функции $(\sin(x))' = \cos(x)$. $(\cos(x))' = -\sin(x)$. $(\cos(x))' = -\sin(x)$. $(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^*2(x))$. Обратные тригонометрические функции $(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^*2(x))$. $(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^*2(x))$. $(\arctan(x))' = 1 / \sqrt{1 - x^*2}$. $(\arctan(x))' = 1 / (1 + x^*2)$. $(\arctan(x))' = 1 / (1 + x^*2)$. $(\arctan(x))' = 1 / (1 + x^*2)$. $(\arctan(x))' = -1 / (1 + x^*2)$. $(\arctan(x))' = -$	Производная частного	
Производная сложной функция $(g(x))' = f'(g(x)) * g'(x)$. Степенная функция $(x^*n)' = n * x^*(n-1)$. Особые случай $(x)' = 1 / (\sqrt{x})! = 1 / (2\sqrt{x}), (1/x)' = -1 / x^*2$. Показательная функция $(a^*x)' = a^*x * \ln(a)$. Особый случай $(e^*x)' = e^*x$. Логарифмическая функция $(\log_a(x))' = 1 / (x * \ln(a))$. Особый случай $(\ln(x))' = 1 / x$ Тригонометрические функции $(\sin(x))' = \cos(x)$. $(\cos(x))' = -\sin(x)$. $(\cos(x))' = -\sin(x)$. $(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^*2(x))$. Обратные тригонометрические функции $(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^*2(x))$. $(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^*2(x))$. $(\arctan(x))' = 1 / \sqrt{1 - x^*2}$. $(\arctan(x))' = 1 / (1 + x^*2)$. $(\arctan(x))' = 1 / (1 + x^*2)$. $(\arctan(x))' = 1 / (1 + x^*2)$. $(\arctan(x))' = -1 / (1 + x^*2)$. $(\arctan(x))' = -$	-	$(v(x))^2$, где $v(x) \neq 0$.
Особые случаи $(x)' = 1, (\sqrt{x})' = 1/(2\sqrt{x}), (1/x)' = -1/x^2.$ Показательная функция $(a^x x)' = a^x x * \ln(a).$ Особый случай $(e^x x)' = e^x x.$ Логарифмическая функция $(\log_2 a(x))' = 1/(x * \ln(a)).$ Особый случай $(\ln(x))' = 1/x$ Тригонометрические функции $(\sin(x))' = \cos(x).$ $(\cos(x))' = -\sin(x).$ $(\tan(x))' = 1/\cos^2(x) = 1 + \tan^2(x).$ $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$ Обратные тригонометрические функции $(\arctan(x))' = 1/\sqrt{1 - x^2}).$ $(\arctan(x))' = 1/\sqrt{1 - x^2}).$ $(\arctan(x))' = 1/(1 + x^2).$ $(\arctan(x)')' = 1/(1 + x^2).$ $(\arctan$	Производная сложной функции	
Показательная функция $(a^x)' = a^x * \ln(a)$. Особый случай $(e^x)' = e^x$. Логарифмическая функция $(\log_a(x))' = 1/(x * \ln(a))$. Тригонометрические функции $(\sin(x))' = 1/x$ Тригонометрические функции $(\cos(x))' = -\sin(x)$. $(\cos(x))' = -\sin(x)$. $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$. Обратные тригонометрические функции $(\cos(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$. Программы): $(\arcsin(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 + x^2}$. Применение Производной для Исследования Функций $(\arccos(x))' = -1/\sqrt{1 + x^2}$. Монотонность функции $(\cot(x))' = -1/\sqrt{1 + x^2}$. Применение Производной для Исследования Функций $(\cot(x))' = -1/\sqrt{1 + x^2}$. $(\arctan(x))' = -1/1 + x$		$(x^n)' = n * x^n(n-1).$
Показательная функция $(a^x)' = a^x * \ln(a)$. Особый случай $(e^x)' = e^x$. Логарифмическая функция $(\log_a(x))' = 1/(x * \ln(a))$. Тригонометрические функции $(\sin(x))' = 1/x$ Тригонометрические функции $(\cos(x))' = -\sin(x)$. $(\cos(x))' = -\sin(x)$. $(\cot(x))' = 1/\sin^2(x) = -(1 + \cot^2(x))$. Обратные тригонометрические функции $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$. Обратные тригонометрические функции $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$. $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$. $(\arctan(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 + x^2}$. Применение Производной для Исследования Функций Если $f(x) > 0$ на интервале, то функция $f(x)$ возрастает на этом интервале. Если $f(x) < 0$ на интервале, то функция $f(x)$ убывает на этом интервале, то функция $f(x)$ постоянна на этом интервале. Если $f(x) = 0$ на интервале, то функция $f(x)$ постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремума в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое	Особые случаи	
Погарифмическая функция $(\log_a(x))' = 1/(x*\ln(a)).$ Особый случай $(\ln(x))' = 1/x$ Тригонометрические функции $(\sin(x))' = \cos(x).$ $(\cos(x))' = -\sin(x).$ $(\tan(x))' = 1/\cos^2(x) = 1 + \tan^2(x).$ $(\cot(x))' = 1/\sin^2(x) = -(1 + \cot^2(x))$ Обратные тригонометрические функции $(\arctan(x))' = 1/\sin^2(x) = -(1 + \cot^2(x))$ $(\arctan(x))' = 1/\sin^2(x)$ $(\arctan(x))' = 1/\sin^2(x)$ $(\arctan(x))' =$		
Особый случай $(\ln(x))' = 1/x$ Тригонометрические функции $(\sin(x))' = \cos(x)$. $(\cos(x))' = -\sin(x)$. $(\tan(x))' = 1/\cos^2(x) = 1 + \tan^2(x)$. $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$ Обратные тригонометрические функции $(\arctan(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 + x^2}$. Применение Производной для Исследования Функций $(\arctan(x))' = 1/\sqrt{1 + x^2}$. Если $f'(x) > 0$ на интервале, то функция $f(x)$ возрастает на этом интервале. Если $f'(x) < 0$ на интервале. Если $f'(x) = 0$ на интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое	Особый случай	$(e^{\Lambda}x)' = e^{\Lambda}x.$
Особый случай $(\ln(x))' = 1/x$ Тригонометрические функции $(\sin(x))' = \cos(x)$. $(\cos(x))' = -\sin(x)$. $(\tan(x))' = 1/\cos^2(x) = 1 + \tan^2(x)$. $(\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$ Обратные тригонометрические функции $(\arctan(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 - x^2}$. $(\arctan(x))' = 1/\sqrt{1 + x^2}$. Применение Производной для Исследования Функций $(\arctan(x))' = 1/\sqrt{1 + x^2}$. Если $f'(x) > 0$ на интервале, то функция $f(x)$ возрастает на этом интервале. Если $f'(x) < 0$ на интервале. Если $f'(x) = 0$ на интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое	Логарифмическая функция	$(\log_a(x))' = 1 / (x * \ln(a)).$
$(\cos(x))' = -\sin(x). \\ (\tan(x))' = 1/\cos^2(x) = 1 + \tan^2(x). \\ (\cot(x))' = -1/\sin^2(x) = -(1 + \cot^2(x))$ Обратные тригонометрические функции (опционально, в зависимости от программы): $(\arccos(x))' = 1/\sqrt{1 - x^2}.$ $(\arctan(x))' = 1/\sqrt{1 + x^2}.$ $(\arctan(x))' = -1/(1 + x^2).$	Особый случай	
$(tan(x))' = 1/\cos^2(x) = 1 + tan^2(x).$ $(cot(x))' = -1/\sin^2(x) = -(1 + cot^2(x))$ Обратные тригонометрические функции (опционально, в зависимости от программы): $(arccos(x))' = -1/\sqrt{(1 - x^2)}.$ $(arccot(x))' = -1/(1 + x^2).$ $Ecnu f'(x) > 0 \text{ на интервале, то функция } f(x) \text{ возрастает на этом интервале.}$ $Ecnu f'(x) < 0 \text{ на интервале, то функция } f(x) \text{ убывает на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ постоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ ностоянна на этом интервале.}$ $Ecnu f'(x) = 0 \text{ на интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) \text{ ностоянна на этом интервале, то функция } f(x) ностоянна на этом интервал$	Тригонометрические функции	$(\sin(x))' = \cos(x).$
$(\cot(x))' = -1/\sin^2(x) = -(1+\cot^2(x))$ Обратные тригонометрические функции (агс $\sin(x)$)' = $1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1+x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1+x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1+x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1+x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1+x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1-x^2)}$. (агс $\cos(x)$)' = $-1/\sqrt{(1+x^2)}$. (агс $\cos(x)$) = $-1/($		$(\cos(x))' = -\sin(x).$
Обратные тригонометрические функции (arcsin(x))' = $1 / \sqrt{(1 - x^2)}$. (arccos(x))' = $-1 / \sqrt{(1 - x^2)}$. (arccos(x))' = $-1 / \sqrt{(1 - x^2)}$. (arccos(x))' = $-1 / \sqrt{(1 - x^2)}$. (arccot(x))' = $-1 / (1 + x^2)$. (arccot(x))' = $-$		$(\tan(x))' = 1 / \cos^2(x) = 1 + \tan^2(x).$
(опционально, в зависимости от программы):		$(\cot(x))' = -1 / \sin^2(x) = -(1 + \cot^2(x))$
программы): $\frac{(\arctan(x))' = 1/(1+x^2).}{(\arccos(x))' = -1/(1+x^2).}$ $\frac{\mathbf{Применение Производной для Исследования Функций}}{\mathbf{Если } f(x) > 0 \text{ на интервале, то функция } f(x)}$ $\frac{\mathbf{Ecnu } f(x) > 0 \text{ на интервале, то функция } f(x)}{\mathbf{возрастает } \mathbf{на этом } \mathbf{интервале, то функция } f(x)}$ $\frac{\mathbf{Ecnu } f(x) < 0 \text{ на интервале, то функция } f(x)}{\mathbf{убывает } \mathbf{на этом } \mathbf{интервале, то функция } f(x)}$ $\frac{\mathbf{Ecnu } f(x) = 0 \text{ на интервале, то функция } f(x)}{\mathbf{постоянна } \mathbf{на этом } \mathbf{интервале, }}$ $\frac{\mathbf{Kритические } \mathbf{точки: Tочки, } \mathbf{s } \mathbf{ которыx } \mathbf{nроизводная } \mathbf{pавна } \mathbf{нулю } \mathbf{uли } \mathbf{ne } \mathbf{cyществует. }$ $\mathbf{Heoбxодимоe } \mathbf{ycловиe } \mathbf{экстремумa: } \mathbf{ecnu } \mathbf{dyhkция } \mathbf{umeet } \mathbf{skctpemyma} \mathbf{nufo} \mathbf{ne } \mathbf{cyщectrsyet. }$ $\mathbf{Hootongoused} \mathbf{nouse} \mathbf$	Обратные тригонометрические функции	$(\arcsin(x))' = 1 / \sqrt{(1 - x^2)}.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(опционально, в зависимости от	$(\arccos(x))' = -1 / \sqrt{1 - x^2}.$
Применение Производной для Исследования Функций Если $f'(x) > 0$ на интервале, то функция $f(x)$ возрастает на этом интервале. Монотонность функции Если $f'(x) < 0$ на интервале, то функция $f(x)$ убывает на этом интервале. Если $f'(x) = 0$ на интервале, то функция $f(x)$ постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое	программы):	$(\arctan(x))' = 1 / (1 + x^2).$
Если $f(x) > 0$ на интервале, то функция $f(x)$ возрастает на этом интервале. Монотонность функции Если $f(x) < 0$ на интервале, то функция $f(x)$ убывает на этом интервале. Если $f(x) = 0$ на интервале, то функция $f(x)$ постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		$(\operatorname{arccot}(x))' = -1 / (1 + x^2).$
Возрастает на этом интервале. Если $f(x) < 0$ на интервале, то функция $f(x)$ убывает на этом интервале. Если $f'(x) = 0$ на интервале, то функция $f(x)$ постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое	Применение Производной	для Исследования Функций
 Монотонность функции Если f'(x) < 0 на интервале, то функция f(x) убывает на этом интервале. Если f'(x) = 0 на интервале, то функция f(x) постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое 		Если $f'(x) > 0$ на интервале, то функция $f(x)$
убывает на этом интервале. Если $f'(x) = 0$ на интервале, то функция $f(x)$ постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		возрастает на этом интервале.
Если f'(x) = 0 на интервале, то функция f(x) постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое	Монотонность функции	Если $f'(x) < 0$ на интервале, то функция $f(x)$
постоянна на этом интервале. Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		
Критические точки: Точки, в которых производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		Если $f'(x) = 0$ на интервале, то функция $f(x)$
производная равна нулю или не существует. Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		постоянна на этом интервале.
Необходимое условие экстремума: если функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		Критические точки: Точки, в которых
функция имеет экстремум в точке, то в этой точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		производная равна нулю или не существует.
точке производная либо равна нулю, либо не существует. Достаточное условие экстремума (Первое		
существует. Достаточное условие экстремума (Первое		функция имеет экстремум в точке, то в этой
Достаточное условие экстремума (Первое		точке производная либо равна нулю, либо не
достаточное условие):		
		достаточное условие):

D 1	Г
Экстремумы функции	Если при переходе через критическую
	точку производная меняет знак с "+" на "-",
	то это точка максимума.
	Если при переходе через критическую
	точку производная меняет знак с "-" на "+",
	то это точка минимума.
	Второе достаточное условие
	экстремума: Если $f'(x_0) = 0$ и $f''(x_0) > 0$, то
	x_0 - точка минимума. Если $f(x_0) = 0$ и
	$f''(x_0) < 0$, то x_0 - точка максимума.
	Если f'(x)> 0 на интервале, то график
	функции выпуклый вниз (вогнутый) на этом
	интервале.
Выпуклость и вогнутость графика функции	Если f'(x) <0 на интервале, то график
	функции выпуклый вверх (выпуклый) на
	этом интервале.
	Точки, в которых меняется направление
Точки перегиба	выпуклости графика функции. В точках
-	перегиба вторая производная либо равна
	нулю, либо не существует.
	Алгоритм:
	1. Найти производную функции f'(x).
Нахождение наибольшего и наименьшего	2. Найти критические точки функции на
значений функции на отрезке	заданном отрезке [a, b].
	3. Вычислить значения функции в
	критических точках и на концах отрезка: f(a),
	f(b), f(x_крит1), f(x_крит2),
	4. Выбрать наибольшее и наименьшее
	значения из полученных.
Касательная к г	рафику функции
	$y = f'(x_0) * (x - x_0) + f(x_0),$ где $x_0 - x_0$
Уравнение касательной	абсцисса точки касания, $f(x_0)$ - ордината
	точки касания, f(x_0) - угловой коэффициент
	касательной.
Геометрический смысл:	Касательная – это прямая, которая "касается"
_	графика функции в заданной точке.

Нахождение Производной Функции

Пример 1: $f(x) = x^3 + 2x^2 - 5x + 7$.

Решение:

Используем правила дифференцирования суммы и степенной функции:

$$f'(x) = (x^3)' + (2x^2)' - (5x)' + (7)'$$

$$f'(x) = 3x^2 + 2 \cdot 2x - 5 \cdot 1 + 0$$

$$f'(x) = 3x^2 + 4x - 5$$

$$Omeem: f'(x) = 3x^2 + 4x - 5$$

Пример 2: $f(x) = \sin(x) * \cos(x)$.

Решение:

Используем правило дифференцирования произведения: (u(x)*v(x))' = u'(x)*v(x) + u(x) *v'(x).

Пусть $u(x) = \sin(x)$ и $v(x) = \cos(x)$.

 $u'(x) = \cos(x)$ и $v'(x) = -\sin(x)$.

 $f'(x) = \cos(x) * \cos(x) + \sin(x) * (-\sin(x))$

 $f'(x) = \cos^2(x) - \sin^2(x)$

Используем тригонометрическое тождество: $\cos^2(x) - \sin^2(x) = \cos(2x)$

Omвет: f'(x) = cos(2x)

Пример 3: $f(x) = (x^2 + 1) / (x - 1)$.

Решение:

Используем правило дифференцирования частного: (u(x) / v(x))' = [u'(x)*v(x) - u(x)*v'(x)] / (u(x) / v(x))' = [u'(x)*v'(x) - u(x)*v'(x)] / (u(x)*v'(x))' = [u'(x)*v'(x) - u(x)*v'(x)] / (u(x $(v(x))^2$.

Пусть $u(x) = x^2 + 1$ и v(x) = x - 1.

u'(x) = 2x u v'(x) = 1.

 $f'(x) = [2x*(x-1) - (x^2 + 1) 1] / (x-1)^2$

 $f'(x) = (2x^2 - 2x - x^2 - 1) / (x - 1)^2$

 $f'(x) = (x^2 - 2x - 1) / (x - 1)^2$

Omeem: $f'(x) = (x^2 - 2x - 1)/(x - 1)^2$

Пример 4: f(x) = ln(sin(x)).

Решение:

Используем правило дифференцирования сложной функции: f(g(x))' = f'(g(x)) * g'(x).

Пусть $g(x) = \sin(x)$ и $f(u) = \ln(u)$.

 $g'(x) = \cos(x)$ и f'(u) = 1/u.

 $f'(x) = (1 / \sin(x)) * \cos(x)$

 $f'(x) = \cos(x) / \sin(x)$

 $f'(x) = \cot(x)$

Omeem: f'(x) = cot(x)

Пример 5: $f(x) = e^{(x^2)}$.

Решение:

Используем правило дифференцирования сложной функции: f(g(x))' = f'(g(x)) * g'(x).

Пусть $g(x) = x^2 u f(u) = e^u$.

g'(x) = 2x и $f'(u) = e^u$.

 $f'(x) = e^{\wedge}(x^{\wedge}2) * 2x$

 $f'(x) = 2x * e^{(x^2)}$

Omeem: $f'(x) = 2x * e^{(x^2)}$

В этих решениях важно помнить о правилах дифференцирования и уметь их применять к различным типам функций. В сложных функциях необходимо использовать правило дифференцирования сложной функции (цепное правило).

Исследование функции с помощью производной

Пример 1: Найти промежутки возрастания и убывания, точки экстремума функции $f(x) = x^3 - 3x^2 + 2$.

Решение:

Находим первую производную

$$f'(x) = 3x^2 - 6x$$

Находим критические точки (где f(x) = 0)

$$3x^2 - 6x = 0$$

$$3x(x-2)=0$$

$$x = 0$$
 или $x = 2$

Определяем знаки производной на интервалах, образованных критическими точками

Интервал ($-\infty$, 0): Пусть x = -1. $f'(-1) = 3(-1)^2 - 6(-1) = 3 + 6 = 9 > 0$. Функция возрастает.

Интервал (0, 2): Пусть x = 1. $f'(1) = 3(1)^2 - 6(1) = 3 - 6 = -3 < 0$. Функция убывает.

Интервал $(2, +\infty)$: Пусть x = 3. $f(3) = 3(3)^2 - 6(3) = 27 - 18 = 9 > 0$. Функция возрастает.

Определяем точки экстремума

В точке х = 0 производная меняет знак с "+" на "-", значит, это точка максимума.

В точке x = 2 производная меняет знак с "-" на "+", значит, это точка минимума.

Вычисляем значения функции в точках экстремума

$$f(0) = (0)^3 - 3(0)^2 + 2 = 2$$
 (максимум)

$$f(2) = (2)^3 - 3(2)^2 + 2 = 8 - 12 + 2 = -2$$
 (минимум)

Вывод

Функция возрастает на интервалах (- ∞ , 0) и (2, + ∞).

 Φ ункция убывает на интервале (0, 2).

Точка максимума: (0, 2).

Точка минимума: (2, -2).

Пример 2: исследовать функцию $f(x) = x^4 - 2x^2 + 1$ на монотонность и экстремумы.

Решение:

Находим первую производную

$$f'(x) = 4x^3 - 4x$$

Находим критические точки (где f(x) = 0)

$$4x^3 - 4x = 0$$

$$4x(x^2 - 1) = 0$$

$$4x(x-1)(x+1) = 0$$

 $x = -1, x = 0, x = 1$

Определяем знаки производной на интервалах, образованных критическими точками

Интервал (- ∞ , -1): Пусть x = -2. f'(-2) = 4(-2)^3 - 4(-2) = -32 + 8 = -24 < 0. Функция убывает.

Интервал (-1, 0): Пусть x = -0.5. $f'(-0.5) = 4(-0.5)^3 - 4(-0.5) = -0.5 + 2 = 1.5 > 0$. Функция возрастает.

Интервал (0, 1): Пусть x = 0.5. $f'(0.5) = 4(0.5)^3 - 4(0.5) = 0.5 - 2 = -1.5 < 0$. Функция убывает.

Интервал $(1, +\infty)$: Пусть x = 2. $f'(2) = 4(2)^3 - 4(2) = 32 - 8 = 24 > 0$. Функция возрастает.

Определяем точки экстремума

В точке x = -1 производная меняет знак с "-" на "+", значит, это точка минимума.

В точке x = 0 производная меняет знак с "+" на "-", значит, это точка максимума.

В точке х = 1 производная меняет знак с "-" на "+", значит, это точка минимума.

Вычисляем значения функции в точках экстремума

$$f(-1) = (-1)^4 - 2(-1)^2 + 1 = 1 - 2 + 1 = 0$$
 (минимум)

$$f(0) = (0)^4 - 2(0)^2 + 1 = 1$$
 (максимум)

$$f(1) = (1)^4 - 2(1)^2 + 1 = 1 - 2 + 1 = 0$$
 (минимум)

Вывод:

Функция убывает на интервалах $(-\infty, -1)$ и (0, 1).

Функция возрастает на интервалах (-1, 0) и $(1, +\infty)$.

Точки минимума: (-1, 0) и (1, 0).

Точка максимума: (0, 1).

Пример 3: найти точки перегиба и промежутки выпуклости/вогнутости для $f(x) = x^3 - 6x^2 + 5x$.

Решение:

Находим первую производную

$$f'(x) = 3x^2 - 12x + 5$$

Находим вторую производную

$$f''(x) = 6x - 12$$

Находим точки, где вторая производная равна нулю (возможные точки перегиба)

$$6x - 12 = 0$$

$$6x = 12$$

$$x = 2$$

Определяем знаки второй производной на интервалах, образованных точкой х = 2

Интервал (- ∞ , 2): пусть x = 0. f"(0) = 6(0) - 12 = -12 <0. График выпуклый вверх. Интервал (2, + ∞): пусть x = 3. f"(3) = 6(3) - 12 = 18 - 12 = 6> 0. График выпуклый вниз.

Определяем точку перегиба

В точке х = 2 вторая производная меняет знак, значит, это точка перегиба.

Вычисляем значение функции в точке перегиба

$$f(2) = (2)^3 - 6(2)^2 + 5(2) = 8 - 24 + 10 = -6$$

Вывод:

График функции выпуклый вверх на интервале $(-\infty, 2)$.

График функции выпуклый вниз на интервале $(2, +\infty)$.

Точка перегиба: (2, -6).

В этих решениях важно помнить, что первая производная определяет монотонность и экстремумы, а вторая производная определяет выпуклость и точки перегиба. Знак производной на интервалах позволяет определить характер поведения функции на этих интервалах.

Нахождение наибольшего и наименьшего значений функции на отрезке

Пример 1: найти наибольшее и наименьшее значения функции $f(x) = x^3 - 6x^2 + 9x - 4$ на отрезке [0, 2].

Находим производную:

$$f'(x) = 3x^2 - 12x + 9$$

Находим критические точки:

Решаем уравнение $3x^2 - 12x + 9 = 0$

Делим обе части на 3: $x^2 - 4x + 3 = 0$

Факторизуем: (x - 1)(x - 3) = 0

Критические точки: x = 1 и x = 3

Проверяем принадлежность отрезку [0, 2]:

x = 1 принадлежит отрезку [0, 2].

x = 3 не принадлежит отрезку [0, 2].

Вычисляем значения функции:

$$f(0) = 0^3 - 6(0)^2 + 9(0) - 4 = -4$$

$$f(1) = 1^3 - 6(1)^2 + 9(1) - 4 = 1 - 6 + 9 - 4 = 0$$

$$f(2) = 2^3 - 6(2)^2 + 9(2) - 4 = 8 - 24 + 18 - 4 = -2$$

Выбираем наибольшее и наименьшее значения:

Наибольшее значение: f(1) = 0Наименьшее значение: f(0) = -4

Ответ: Наибольшее значение функции на отрезке [0, 2] равно 0, наименьшее значение равно -4

Пример 2: найти наибольшее и наименьшее значения функции $f(x) = x + 2\cos(x)$ на отрезке $[0, \pi/2]$.

Находим производную:

$$f'(x) = 1 - 2\sin(x)$$

Находим критические точки:

Pешаем уравнение $1 - 2\sin(x) = 0$

 $2\sin(x) = 1$

sin(x) = 1/2

 $x = \pi/6 + 2\pi k$ или $x = 5\pi/6 + 2\pi k$, где k - целое число.

Проверяем принадлежность отрезку $[0, \pi/2]$:

 $x = \pi/6$ принадлежит отрезку $[0, \pi/2]$.

 $x = 5\pi/6$ не принадлежит отрезку [0, $\pi/2$].

Вычисляем значения функции:

$$f(0) = 0 + 2\cos(0) = 0 + 2(1) = 2$$

$$f(\pi/6) = \pi/6 + 2\cos(\pi/6) = \pi/6 + 2(\sqrt{3}/2) = \pi/6 + \sqrt{3} \approx 0.524 + 1.732 = 2.256$$

$$f(\pi/2) = \pi/2 + 2\cos(\pi/2) = \pi/2 + 2(0) = \pi/2 \approx 1.571$$

Выбираем наибольшее и наименьшее значения:

Наибольшее значение: $f(\pi/6) = \pi/6 + \sqrt{3}$

Наименьшее значение: $f(\pi/2) = \pi/2$

Ответ: Наибольшее значение функции на отрезке $[0, \pi/2]$ равно $\pi/6 + \sqrt{3}$, наименьшее значение равно $\pi/2$.

Составление уравнения касательной к графику функции

Пример 1: найти уравнение касательной к графику функции $f(x) = x^2 - 3x + 4$ в точке x 0 = 2.

Находим значение функции в точке касания:

$$f(x_0) = f(2) = 2^2 - 3(2) + 4 = 4 - 6 + 4 = 2$$

Находим производную функции:

$$f'(x) = 2x - 3$$

Находим значение производной в точке касания:

$$f'(x_0) = f'(2) = 2(2) - 3 = 4 - 3 = 1$$

Подставляем найденные значения в формулу уравнения касательной:

$$y = 1(x - 2) + 2$$

$$y = x - 2 + 2$$

$$y = x$$

Ответ: Уравнение касательной к графику функции $f(x) = x^2 - 3x + 4$ в точке $x_0 = 2$ имеет вид y = x.

Пример 2: найти уравнение касательной к графику функции $f(x) = \sin(x)$ в точке $x_0 = \pi/2$ Находим значение функции в точке касания:

$$f(x_0) = f(\pi/2) = \sin(\pi/2) = 1$$

Находим производную функции:

$$f'(x) = \cos(x)$$

Находим значение производной в точке касания:

$$f(x_0) = f(\pi/2) = \cos(\pi/2) = 0$$

Подставляем найденные значения в формулу уравнения касательной:

$$y = 0(x - \pi/2) + 1$$

 $y = 0 + 1$
 $y = 1$

Ответ: Уравнение касательной к графику функции $f(x) = \sin(x)$ в точке $x_0 = \pi/2$ имеет вид y = 1.

Уровень А (Легкий)

Нахождение производной (11 задач):

- 1. f(x) = 5x 3
- 2. $f(x) = x^2 + 2x 1$
- $3. f(x) = 3x^3 x^2 + 4x$
- 4. f(x) = 7
- 5. $f(x) = x^5$
- 6. $f(x) = \sqrt{x}$
- 7. f(x) = 1/x
- 8. $f(x) = \sin(x)$
- 9. f(x) = cos(x)
- 10. $f(x) = e^x$
- 11. f(x) = ln(x)

Определение знака производной в точке (3 задачи):

- 1. $f(x) = x^2$, найти знак f'(2)
- 2. f(x) = cos(x), найти знак $f'(\pi/4)$
- 3. $f(x) = e^x$, найти знак f'(-1)

Уровень А (Легкий)

- Нахождение производной сложных функций (9 задач):
 - 1. $f(x) = (x^2 + 1)^{\frac{1}{3}}$
 - 2. $f(x) = \sin(2x)$
 - $3. f(x) = \cos(x^2)$
 - 4. $f(x) = e^{4}(3x)$
 - 5. $f(x) = ln(x^2 + 1)$
 - 6. $f(x) = x * \sin(x)$

- 7. f(x) = x / (x + 1)
- 8. $f(x) = \sqrt{(x^2 + 1)^2}$
- 9. $f(x) = e^{x}(\sin(x))$
- Исследование функций на монотонность и экстремумы (5 задач):
 - 1. $f(x) = x^2 4x + 3$

 - 2. $f(x) = x^3 3x$ 3. $f(x) = x^4 2x^2$
 - 4. $f(x) = x^3 6x^2 + 9x$
 - 5. $f(x) = \sin(x) + \cos(x), x \in [0, 2\pi]$
- Нахождение наибольшего и наименьшего значений функции на отрезке (4 задачи):
 - 1. $f(x) = x^3 3 x^2 + 1, x \in [-1, 3]$
 - 2. $f(x) = x^2 2x + 5, x \in [0, 3]$
 - 3. $f(x) = \sin(x), x \in [0, \pi]$
 - 4. $f(x) = x + 1/x, x \in [1, 4]$
- Составление уравнения касательной (4 задачи):
 - 1. $f(x) = x^2$, $x_0 = 1$
 - 2. $f(x) = \sin(x), x_0 = 0$
 - 3. $f(x) = e^x$, $x_0 = 0$
 - 4. $f(x) = x^3 x$, $x_0 = -1$

Уровень В (Сложный)

- Исследование функций с параметром (2 задачи):
- 1. Найти значения параметра a, при которых функция $f(x) = x^3$ ax имеет экстремум в точке x = 2.
- 2. При каких значениях параметра а функция $f(x) = x^2 + ax + 1$ возрастает на всей числовой прямой?
- Задачи на оптимизацию (прикладные задачи, требующие составления функции и нахождения ее экстремумов) (3 задачи):
- 1. Из квадратного листа картона со стороной 12 см нужно вырезать по углам одинаковые квадраты и согнуть из оставшейся части коробку без крышки. Какова должна быть сторона вырезаемого квадрата, чтобы объем коробки был наибольшим?
- 2. Найти размеры прямоугольника наибольшей площади, который можно вписать в круг радиуса 5 см.
- 3. Два тела движутся по прямой. Зависимость пройденного пути от времени задаётся уравнениями $s_1 = t^3 + 2t^2 - 5t$ и $s_2 = t^3 + 5t^2 - 11t + 7$. В какой момент времени скорости этих тел будут равны?
- Задачи, требующие нестандартных подходов (2 задачи):

- 1. Доказать, что касательная к гиперболе y = 1/x образует с осями координат треугольник постоянной площади.
- 2. Найти все значения x, при которых касательные κ графикам функций $f(x) = x^2$ и $g(x) = x^3$ параллельны.

VI. Планиметрия Краткий справочник

Понятие	Определение		
Точка	Наименьший элемент, не имеющий размеров.		
Прямая	Безграничная, не имеющая толщины линия.		
Отрезок:			
1	Часть прямой, ограниченная двумя точками.		
Луч	Часть прямой, ограниченная одной точкой.		
Угол	Фигура, образованная двумя лучами, выходящими из одной точки (вершины).		
Развернутый угол	180 градусов.		
Прямой угол	90 градусов.		
Острый угол	Меньше 90 градусов.		
Тупой угол	Больше 90 градусов, но меньше 180 градусов.		
Смежные углы	Два угла, имеющие общую сторону и в сумме дающие 180 градусов.		
Вертикальные углы	Два угла, образованные пересечением двух прямых, не имеющие		
	общих сторон. Вертикальные углы равны.		
Параллельные прямые	Прямые, которые не пересекаются.		
Перпендикулярные прямые	Прямые, пересекающиеся под прямым углом.		
	Треугольники		
Равносторонний	Все стороны равны, все углы равны 60 градусов.		
Равнобедренный <a><a>	Две стороны равны (боковые стороны), углы при основании равны		
Прямоугольный	Один угол равен 90 градусов. Сторона напротив прямого угла - гипотенуза, две другие - катеты.		
Остроугольный	Все углы острые.		
Тупоугольный	Один угол тупой.		
	, - A y		
	Сумма углов треугольника равна 180 градусов.		
Свойства треугольников	Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. и наоборот. Напротив большей стороны лежит больший угол		
Неравенство треугольника	сумма любых двух сторон больше третьей стороны.		
Признаки равенства треугольников			
По трем сторонам	Если три стороны одного треугольника соответственно равны трем		
The Tpem Cropolium	сторонам другого треугольника, то такие треугольники равны.		
По двум сторонам и углу между	Если две стороны и угол между ними одного треугольника		
ними	соответственно равны двум сторонам и углу между ними другого		
ATTAINT	треугольника, то такие треугольники равны.		

По стороне и двум прилежащим	Если сторона и два прилежащих к ней угла одного треугольника
углам	соответственно равны стороне и двум прилежащим к ней углам
	другого треугольника, то такие треугольники равны.

Теоремы геометрии		
Теорема Пифагора	В прямоугольном треугольнике квадрат гипотенузы равен сумме	
	квадратов катетов $(a^2 + b^2 = c^2)$.	
Теорема синусов	$a/\sin(A) = b/\sin(B) = c/\sin(C)$, где a, b, c - стороны треугольника, A, B,	
	С - противолежащие им углы.	
Теорема косинусов	$a^2 = b^2 + c^2 - 2bc * cos(A)$, где a, b, c - стороны треугольника, A - угол,	
	противолежащий стороне а.	
Свойства медиан, биссектрис, высот		
Медиана	отрезок, соединяющий вершину треугольника с серединой	
	противоположной стороны. Три медианы пересекаются в одной	
	точке, которая делит каждую медиану в отношении 2:1, считая от	
Биссектриса	вершины. отрезок, делящий угол пополам. Биссектриса угла треугольника	
Биссектриса	делит противоположную сторону на отрезки, пропорциональные	
	прилежащим сторонам.	
Высота -	перпендикуляр, опущенный из вершины треугольника на	
	противоположную сторону (или её продолжение).	
	Четырехугольники	
Виды четырехугольников		
Параллелограмм	Четырехугольник, у которого противоположные стороны	
	попарно параллельны.	
Прямоугольник	Параллелограмм, у которого все углы прямые.	
Квадрат	Прямоугольник, у которого все стороны равны.	
Ромб	Параллелограмм, у которого все стороны равны.	
Трапеция	Четырехугольник, у которого две стороны параллельны	
	(основания), а две другие не параллельны (боковые	
	стороны).	
Равнобедренная трапеция	Трапеция, у которой боковые стороны равны.	
Прямоугольная трапеция	Трапеция, у которой одна из боковых сторон	
	перпендикулярна основаниям.	
Свойства	Сумма углов четырехугольника равна 360 градусов.	
четырехугольников	e jima jime ieizipenji enzima pazna e ee ipagjeezi	
	Противоположные стороны равны.	
Параллелограмм		
	Противоположные углы равны.	
П	Диагонали точкой пересечения делятся пополам.	
Прямоугольник	Все свойства параллелограмма.	
	Диагонали равны.	
Квадрат	Все свойства прямоугольника и ромба.	
	Диагонали перпендикулярны и являются биссектрисами	
	углов.	
Ромб	Все свойства параллелограмма.	

	Диагонали перпендикулярны и являются биссектрисами	
Трапеция	углов. Средняя линия трапеции (отрезок, соединяющий середины боковых сторон) параллельна основаниям и равна их	
H V	полусумме.	
Признаки: Указываю	г на то, как определить вид четырехугольника по его	
свойствам.		
0.000.000.000	Окружность и круг	
Окружность	Геометрическое место точек, равноудаленных от заданной	
Vario	точки (центра).	
Круг	Часть плоскости, ограниченная окружностью.	
Hours (O)	Элементы окружности и круга	
Центр (O)	Точка, равноудаленная от всех точек окружности.	
Радиус (R)	Отрезок, соединяющий центр с любой точкой окружности.	
Диаметр (D)	Отрезок, проходящий через центр и соединяющий две	
Vonue	точки окружности. D = 2R.	
Хорда Касательная	Отрезок, соединяющий две точки окружности.	
Касательная	Прямая, имеющая с окружностью только одну общую точку (точку касания). Радиус, проведенный в точку	
Commune	касания, перпендикулярен касательной.	
Секущая	Прямая, пересекающая окружность в двух точках.	
Дуга окружности	Часть окружности, заключенная между двумя точками.	
Центральный угол	Угол, вершина которого находится в центре окружности.	
	Градусная мера центрального угла равна градусной мере	
D-way w voor	дуги, на которую он опирается.	
Вписанный угол	Угол, вершина которого лежит на окружности, а стороны пересекают окружность. Вписанный угол равен половине	
	дуги, на которую он опирается. Вписанные углы, опирающиеся на одну и ту же дугу, равны. Вписанный	
	угол, опирающийся на диаметр, прямой.	
	Касательная к окружности перпендикулярна радиусу,	
	проведенному в точку касания.	
Теоремы	Угол между касательной и хордой, выходящей из точки	
Теоремы	касания, равен половине дуги, заключенной между ними.	
	Равные хорды стягивают равные дуги.	
	Если из точки вне окружности проведены две секущие, то	
Теорема о секущихся	произведение длины одной секущей на ее внешнюю часть	
теорема в секущимея	равно произведению длины другой секущей на ее	
	внешнюю часть.	
Теорема о касательной и	Если из точки вне окружности проведены касательная и	
секущей	секущая, то квадрат длины касательной равен	
	произведению длины секущей на ее внешнюю часть.	
Площади фигур		
S = (1/2) * a * h, где a - основание, h - высота.		

S = (1/2) * a * b * sin(C), где a, b - стороны, C - угол между
ними.
$S = \sqrt{(p(p-a)(p-b)(p-c))}$ (Формула Герона), где р -
полупериметр, а, b, с - стороны.
S = (abc) / (4R), где R - радиус описанной окружности.
S = pr, где r - радиус вписанной окружности, p -
полупериметр.
S = a * h, где a - основание, h - высота.
$S = a * b * sin(\alpha)$, где a, b - стороны, α - угол между ними.
S = a * b, где a, b - стороны.
$S = a^2$, где a - сторона.
S = a * h, где a - сторона, h - высота.
$S = (1/2) * d_1 * d_2$, где d_1 , d_2 - диагонали.
S = ((a + b) / 2) * h, где a, b - основания, h - высота.
$S = \pi R^2$, где R - радиус.

Примеры решения задач

Пример 1: Нахождение элементов треугольника.

Условие: В треугольнике ABC известно, что AB = 5 см, BC = 7 см, \angle B = 60 $^{\circ}$. Найти сторону AC.

Решение:

Используем теорему косинусов:

 $AC^2 = AB^2 + BC^2 - 2 * AB * BC * cos(B)$

 $AC^2 = 5^2 + 7^2 - 2 \times 5 \times 7 * \cos(60^\circ)$

 $AC^2 = 25 + 49 - 70 * (1/2)$

 $AC^2 = 74 - 35$

 $AC^2 = 39$

 $AC = \sqrt{39} \text{ cm}$

Ответ: $AC = \sqrt{39}$ см

Пример 2: Доказательство геометрического утверждения.

Условие: Доказать, что сумма углов выпуклого четырехугольника равна 360° .

Доказательство:

Проведем диагональ в четырехугольнике. Диагональ разделит четырехугольник на два треугольника.

Сумма углов каждого треугольника равна 180°.

Сумма углов двух треугольников равна $180^{\circ} + 180^{\circ} = 360^{\circ}$.

Сумма углов четырехугольника равна сумме углов двух треугольников, на которые он разделен диагональю.

Следовательно, сумма углов выпуклого четырехугольника равна 360° . 4.T.Д

Пример 3: Вычисление площади фигуры.

Условие: Найти площадь ромба, если его диагонали равны 6 см и 8 см.

Решение:

Площадь ромба равна половине произведения его диагоналей:

 $S = (1/2) * d_1 * d_2$

 $S = (1/2) \times 6 \times 8$

 $S = 24 \text{ cm}^2$

Ответ: Площадь ромба равна 24 см².

Задачи для самостоятельного решения

Уровень А (Простые)

- 1. В прямоугольном треугольнике один из катетов равен 3, а гипотенуза равна 5. Найдите другой катет.
- 2. Найдите площадь прямоугольника со сторонами 4 и 7.
- 3. В равнобедренном треугольнике угол при основании равен 50°. Найдите угол при вершине.
- 4. Найдите площадь круга радиуса 5.
- 5. В параллелограмме один угол равен 120°. Найдите остальные углы.

Уровень А (Простые)

- 1. Высота, проведенная к гипотенузе прямоугольного треугольника, делит гипотенузу на отрезки длиной 4 и 9. Найдите высоту.
- 2. Найдите площадь трапеции с основаниями 6 и 10 и высотой 5.
- 3. Окружность вписана в квадрат со стороной 8. Найдите площадь круга.
- 4. В треугольнике ABC известно, что $\overrightarrow{AB} = 4$, $\overrightarrow{BC} = 6$, угол $\overrightarrow{B} = 60^{\circ}$. Найдите AC.
- 5. Диагонали ромба равны 10 и 24. Найдите сторону ромба.

Уровень В (Сложный)

- 1. Докажите, что биссектрисы внутренних односторонних углов при двух параллельных прямых и секущей перпендикулярны.
- 2. Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
- 3. Докажите, что в равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
- 4. Докажите, что если в четырехугольнике противоположные стороны попарно равны, то он является параллелограммом.
- 5. Докажите, что около любого равнобедренного треугольника можно описать окружность.

Примеры решения задач

Пример 1: Нахождение элементов треугольника

Условие: в треугольнике ABC угол A равен 30°, угол B равен 45°, а сторона BC равна 8 см. Найдите сторону АС.

Решение:

Применим теорему синусов:

 $AC / \sin(B) = BC / \sin(A)$

Подставим известные значения:

 $AC / \sin(45^\circ) = 8 / \sin(30^\circ)$

Знаем, что $\sin(45^\circ) = \sqrt{2/2}$ и $\sin(30^\circ) = 1/2$. Подставляем:

 $AC / (\sqrt{2}/2) = 8 / (1/2)$

Упрощаем уравнение:

AC * $(2/\sqrt{2}) = 16$

 $AC = 16 * (\sqrt{2}/2)$ $AC = 8\sqrt{2}$

Ответ: $AC = 8\sqrt{2}$ см

Пример 2: Доказательство геометрического утверждения

Условие: Доказать, что диагонали прямоугольника равны.

Доказательство:

Рассмотрим прямоугольник ABCD, где углы A, B, C, D прямые.

Рассмотрим треугольники ABC и DCB.

В этих треугольниках:

- AB = DC (противоположные стороны прямоугольника равны)
- ВС общая сторона
- Угол ABC = yглу DCB = 90°

Следовательно, треугольники АВС и DCB равны по двум сторонам и углу между ними (SAS).

Из равенства треугольников следует, что AC = DB.

Ответ: Диагонали прямоугольника равны.

Пример 3: Вычисление площади фигуры

Условие: Найдите площадь параллелограмма, если его стороны равны 5 см и 8 см, а угол между ними равен 60°.

Решение:

Площадь параллелограмма равна произведению двух смежных сторон на синус угла между ними:

```
S = a \ b \ \sin(\gamma) Подставляем известные значения: S = 5 \times 8 \times \sin(60^\circ) Знаем, что \sin(60^\circ) = \sqrt{3}/2. Подставляем: S = 5 \times 8 \times (\sqrt{3}/2) S = 40 * (\sqrt{3}/2) S = 20\sqrt{3}
```

Ответ: Площадь параллелограмма равна 20√3 см²

Задачи для самостоятельного решения

Уровень А (Простые)

- 1. Найдите площадь квадрата со стороной 7 см.
- 2. В прямоугольном треугольнике катеты равны 6 см и 8 см. Найдите гипотенузу.
- 3. Один из углов параллелограмма равен 130°. Найдите остальные углы.
- 4. Найдите длину окружности радиусом 5 см.
- 5. В равнобедренном треугольнике угол при вершине равен 40°. Найдите углы при основании.

Уровень А (Простые)

- 1. Найдите площадь трапеции с основаниями 8 см и 12 см и высотой 5 см.
- 2. Окружность вписана в квадрат со стороной 10 см. Найдите радиус окружности.
- 3. В треугольнике ABC известно, что AB = 6 см, BC = 8 см, AC = 10 см. Найдите площадь треугольника.
- 4. Диагонали ромба равны 12 см и 16 см. Найдите площадь ромба.
- 5. Сторона равностороннего треугольника равна 6 см. Найдите его площадь.

Уровень В (Сложные)

- 1. Докажите, что середина гипотенузы прямоугольного треугольника равноудалена от всех его вершин.
- 2. Докажите, что биссектрисы смежных углов перпендикулярны.
- 3. Докажите, что углы при основании равнобедренной трапеции равны.
- 4. Докажите, что если в четырехугольнике диагонали перпендикулярны и точкой пересечения делятся пополам, то этот четырехугольник ромб.
- 5. Докажите, что сумма углов выпуклого n-угольника равна (n-2) * 180°.

Уровень В (Сложные)

- 1. Середина гипотенузы прямоугольного треугольника равноудалена от всех его вершин: Проведите медиану к гипотенузе. Докажите, что она равна половине гипотенузы.
- 2. Биссектрисы смежных углов перпендикулярны: Пусть смежные углы α и β (α + β = 180°). Их биссектрисы образуют углы α /2 и β /2. Докажите, что α /2 + β /2 = 90°.
- 3. Углы при основании равнобедренной трапеции равны: Проведите высоты из вершин меньшего основания. Рассмотрите получившиеся прямоугольные треугольники и докажите их равенство.
- 4. Четырехугольник с перпендикулярными и делящимися пополам диагоналями ромб: Покажите, что диагонали являются серединными перпендикулярами. Из этого следует, что все стороны равны.
- 5. Сумма углов выпуклого n-угольника равна (n-2) * 180°: Разбейте многоугольник на (n-2) треугольника, проведя диагонали из одной вершины. Сумма углов каждого треугольника 180°.

V. СТЕРЕОМЕТРИЯ

T	Теоретический справочник, основные понятия		
Пространство	Множество всех точек.		
Точка	Наименьший элемент, не имеющий размеров.		
Прямая	Безграничная, не имеющая толщины линия.		
Плоскость	Безграничная плоская поверхность.		
Аксиомы стереомет	рии: Основные утверждения, принимаемые без доказательства.		
Через любые три точ	Через любые три точки, не лежащие на одной прямой, можно провести плоскость, и		
притом только одну			
Если две точки прямо	Если две точки прямой лежат в плоскости, то вся прямая лежит в этой плоскости.		
Если две плоскости и	Если две плоскости имеют общую точку, то они имеют общую прямую, проходящую		
через эту точку.			
Взаимное расположение прямых в пространстве			
Пересекающиеся	Имеют одну общую точку.		
Параллельные	Лежат в одной плоскости и не пересекаются.		
Скрещивающиеся	Не лежат в одной плоскости и не пересекаются.		
-	Взаимное расположение прямой и плоскости		
Прямая лежит в плоскости.			
Прямая пересекает п.	лоскость: Имеет одну общую точку.		
Прямая параллельна	Прямая параллельна плоскости: Не имеет общих точек.		
Взаимное расположение двух плоскостей			
Пересекающиеся	Имеют общую прямую (линию пересечения).		
Параллельные	Не имеют общих точек.		
Перпендикулярность			
Прямая	Прямая перпендикулярна любой прямой, лежащей в этой		
перпендикулярна	плоскости и проходящей через точку пересечения прямой и		
плоскости	плоскости.		

Две плоскости	Одна из плоскостей содержит прямую, перпендикулярную другой
перпендикулярны	плоскости.
перисидикулириы	Углы
Угол между двумя	Меньший из двух углов, образованных прямыми.
пересекающимися	Tribinini no Abyri yiricb, copasebanibin npinibinin
прямыми	
Угол между прямой	Угол между прямой и её проекцией на эту плоскость.
и плоскостью	o rest mestage inputation in organization in organization
Двугранный угол	Угол между двумя полуплоскостями, имеющими общую прямую
	(ребро двугранного угла). Мера двугранного угла измеряется
	линейным углом, образованным двумя перпендикулярами к
	ребру, проведенными из одной точки на ребре в каждой из
	полуплоскостей.
Многогранный угол	Угол, образованный несколькими плоскостями, пересекающимися
	в одной точке.
Многогранники	
Многогранник	Тело, ограниченное плоскими многоугольниками (гранями).
Элементы многогранника	
Грань	Плоский многоугольник, ограничивающий многогранник.
Ребро	Сторона грани.
Вершина	Точка, где сходятся ребра.
•	Виды многогранников
Призма	Многогранник, у которого две грани - равные многоугольники
	(основания), лежащие в параллельных плоскостях, а остальные
	грани - параллелограммы (боковые грани).
Прямая призма	Боковые ребра перпендикулярны основаниям.
Правильная призма	Прямая призма, у которой основания - правильные
	многоугольники.
Параллелепипед	Призма, у которой основания - параллелограммы.
Прямоугольный	Параллелепипед, у которого все грани - прямоугольники.
параллелепипед	
Куб	Прямоугольный параллелепипед, у которого все грани - квадраты.
Пирамида	Многогранник, у которого одна грань - многоугольник
	(основание), а остальные грани - треугольники с общей вершиной
	(вершина пирамиды).
Правильная	Пирамида, у которой основание - правильный многоугольник, а
пирамида	вершина проецируется в центр основания.
Усеченная	Часть пирамиды, заключенная между основанием и плоскостью,
пирамида	параллельной основанию.
Правильные	Выпуклые многогранники, у которых все грани - равные
многогранники	правильные многоугольники и в каждой вершине сходится
(Платоновы тела)	одинаковое число ребер.
Тела вращения	
Тело вращения	Тело, образованное вращением плоской фигуры вокруг оси.

Цилиндр	Тело, образованное вращением прямоугольника вокруг одной из
	его сторон.
Основания	Два равных круга, лежащие в параллельных плоскостях.
Боковая	Поверхность, образованная вращением стороны прямоугольника,
поверхность	не являющейся осью вращения.
Высота	Перпендикуляр, опущенный из точки одного основания на другое.
Ось	Прямая, проходящая через центры оснований.
Конус	Тело, образованное вращением прямоугольного треугольника
	вокруг одного из его катетов.
Основание	Круг.
Вершина	Точка, не лежащая в плоскости основания.
Боковая	Поверхность, образованная вращением гипотенузы.
поверхность	
Высота	Перпендикуляр, опущенный из вершины на плоскость основания.
Ось	Прямая, проходящая через вершину и центр основания.
Шар (Сфера)	Тело, образованное вращением полукруга вокруг его диаметра.
Центр	Центр полукруга.
Радиус	Радиус полукруга.
Диаметр	Диаметр полукруга.

Объемы тел

Призма	$V = S_{och} \times h$, где S_{och} - площадь основания, h - высота.
Пирамида	$V = (1/3) \times S$ _осн \times h, где S _осн - площадь основания, h -
	высота.
Цилиндр	$V = \pi R^2 h$, где R - радиус основания, h - высота.
Конус	$V = (1/3)\pi R^2 h$, где R - радиус основания, h - высота.
Шар	$V = (4/3)\pi R^3$, где R - радиус.
Усеченная пирамида	$V = (1/3)h(S_1 + S_2 + \sqrt{(S_1S_2)})$, где h - высота, S_1 и S_2 - площади
	оснований.
Усеченный конус	$V = (1/3)\pi h(R^2 + r^2 + Rr)$, где h - высота, R и r - радиусы
	оснований.
Площадь поверхности тел	
Призма (боковая	S_бок = P_осн × h, где P_осн - периметр основания, h -
поверхность)	высота.
Призма (полная	$S_{\text{полн}} = S_{\text{бок}} + 2S_{\text{осн}}$
поверхность)	
Пирамида (боковая	$S_{\text{бок}} = (1/2) \times P_{\text{осн}} \times 1$, где $P_{\text{осн}}$ - периметр основания, 1 -
поверхность)	апофема (высота боковой грани).
Пирамида (полная	$S_{\text{полн}} = S_{\text{бок}} + S_{\text{осн}}$
поверхность)	
Цилиндр (боковая	S_{δ} бок = $2\pi Rh$, где R - радиус основания, h - высота.
поверхность)	

Цилиндр (полная	$S_{\text{полн}} = 2\pi R(R + h)$
поверхность)	
Конус (боковая	S_бок = πR1, где R - радиус основания, 1 - образующая
поверхность)	(расстояние от вершины до точки на окружности основания).
Конус (полная	$S_{\text{полн}} = \pi R(R+1)$
поверхность)	
Сфера (полная	$S=4\pi R^2$, где R - радиус.
поверхность)	

Примеры решения задач

Пример 1: Нахождение угла между прямой и плоскостью.

Условие: в кубе ABCDA₁B₁C₁D₁ найдите угол между прямой A₁C и плоскостью ABC.

Решение:

Проекция А₁С на плоскость АВС - это АС.

Угол между А₁С и АВС - это угол А₁СА.

Треугольник A_1AC - прямоугольный ($\angle A_1AC = 90^\circ$).

 $A_1A = AA_1 = a$ (сторона куба).

 $AC = a\sqrt{2}$ (диагональ квадрата).

 $\tan(\angle A_1CA) = A_1A / AC = a / (a\sqrt{2}) = 1/\sqrt{2} = \sqrt{2/2}$

 $\angle A_1CA = \arctan(\sqrt{2}/2) \approx 35.3^{\circ}$

Ответ: Угол между прямой A_1C и плоскостью ABC равен $arctan(\sqrt{2/2}) \approx 35.3$ °.

Пример 2: Вычисление объема пирамиды.

Условие: Найдите объем правильной четырехугольной пирамиды, сторона основания которой равна 4, а высота равна 6.

Решение:

Площадь основания (квадрата): $S_{och} = 4^2 = 16$ Объем пирамиды: $V = (1/3) \times S_{och} \times h = (1/3) \times 16 \times 6 = 32$

Ответ: Объем пирамиды равен 32.

Пример 3: Сечение многогранника.

Условие: В кубе ABCDA1B1C1D1 постройте сечение, проходящее через точки K, L, M, где K - середина AA1, L - середина BB1, M - середина CC1.

Решение:

Точки К, L, М лежат в плоскости, параллельной плоскости основания АВСО.

Линия пересечения сечения с гранью AA1B1B - это прямая KL.

Линия пересечения сечения с гранью BB1C1C - это прямая LM.

Сечение - это прямоугольник KLMN, где N - середина DD1. Это сечение также является квадратом.

Пример 4: Комбинация тел.

Условие: в цилиндр вписан шар. Найдите отношение объема шара к объему цилиндра.

Решение:

Пусть R - радиус шара и основания цилиндра.

Тогда высота цилиндра равна 2R.

V шара = $(4/3)\pi R^3$

V цилиндра = $\pi R^2 h = \pi R^2 (2R) = 2\pi R^3$

V шара / V цилиндра = $((4/3)\pi R^3)$ / $(2\pi R^3)$ = 4/6 = 2/3

Ответ: Отношение объема шара к объему цилиндра равно 2/3.

Задачи для самостоятельного решения

Уровень А (Простые)

- 1. Найдите объем куба со стороной 5.
- 2. Найдите площадь боковой поверхности цилиндра, радиус основания которого равен 3, а высота равна 4.
- 3. Найдите объем конуса, радиус основания которого равен 6, а высота равна 8.
- 4. Найдите площадь сферы радиуса 2.
- 5. Сторона основания правильной четырехугольной пирамиды равна 6, а высота равна 4. Найдите объем пирамиды.

Уровень А (Простые)

- 1. Диагональ прямоугольного параллелепипеда равна 13, а стороны основания равны 4 и 12. Найдите высоту параллелепипеда.
- 2. В цилиндр вписана правильная четырехугольная призма. Найдите отношение объема призмы к объему цилиндра.
- 3. Образующая конуса равна 10 и наклонена к плоскости основания под углом 60°. Найдите объем конуса.
- 4. Шар вписан в куб со стороной 6. Найдите объем шара.

5. В правильной треугольной пирамиде сторона основания равна 4, а боковое ребро равно 5. Найдите объем пирамиды.

Уровень В (Сложные)

- 1. В конус вписан цилиндр. Основание цилиндра лежит на основании конуса, а верхнее основание касается боковой поверхности конуса. Найдите отношение объема цилиндра к объему конуса, если высота конуса в два раза больше радиуса его основания.
- 2. Докажите, что объем тетраэдра равен одной шестой произведения площади основания на высоту.
- 3. Около шара описан цилиндр. Докажите, что площадь поверхности шара равна площади боковой поверхности цилиндра.
- 4. В правильной четырехугольной пирамиде двугранный угол при основании равен 45°. Найдите площадь боковой поверхности пирамиды, если площадь ее основания равна 16.
- 5. Основанием пирамиды является прямоугольный треугольник с катетами 6 и 8. Все боковые ребра пирамиды равны 13. Найдите высоту пирамиды.

VI. Экономические задачи

	Кратини справаннии основни и понятия
T.C.	Краткий справочник, основные понятия
Кредит	Предоставление денежных средств (или товаров) заемщику на
	условиях возвратности, срочности и платности (проценты).
Вклад (Депозит)	Денежные средства, переданные вкладчиком банку на хранение с
	целью получения дохода в виде процентов.
Процентная ставка	Размер платы за использование кредита или размер дохода по
	вкладу, выраженный в процентах годовых.
Срок кредита/вклада	Период времени, на который предоставляется кредит или
	размещается вклад.
Аннуитетные	Равные по сумме ежемесячные платежи по кредиту, включающие
платежи	в себя часть основного долга и проценты.
Дифференцированные	Ежемесячные платежи по кредиту, при которых сумма основного
платежи	долга выплачивается равными частями, а проценты начисляются
	на остаток долга. Таким образом, платежи уменьшаются с
	каждым месяцем.
Наращенная сумма	Сумма, которую получит вкладчик в конце срока вклада с учетом
	процентов.
Тело кредита	Первоначальная сумма кредита без учета процентов.
(Основной долг)	
Проценты по	Доход банка (по кредиту) или вкладчика (по вкладу), выраженный
кредиту/вкладу	в денежной форме.

Эффективная	Реальная процентная ставка по кредиту, учитывающая все
процентная ставка	комиссии и дополнительные платежи. Обычно выше номинальной
процентния ставка	процентной ставки.
Инфляция	Устойчивое повышение общего уровня цен на товары и услуги в
индикфии	стране. Влияет на реальную доходность вкладов и стоимость
Иоминови над	кредитов.
Номинальная	Процентная ставка, указанная в договоре.
процентная ставка	TT
Реальная процентная	Номинальная процентная ставка, скорректированная на уровень
ставка	инфляции.
	Формулы для расчета кредитов и вкладов
Аннуитетные	$A = S \times (i \times (1+i)^n) / ((1+i)^n - 1)$
платежи	где:
	• А - ежемесячный аннуитетный платеж
	• S - сумма кредита (основной долг)
	• і - месячная процентная ставка (годовая ставка / 12 / 100)
	• п - количество месяцев (срок кредита в месяцах)
Дифференцированные	• Основной долг (ежемесячно): D = S / n
платежи	• Проценты (ежемесячно): $P \ k = (S - (k - 1) \times D) \times i$
	• Ежемесячный платеж: $A k = D + P k$
	где:
	• S - сумма кредита (основной долг)
	• п - количество месяцев (срок кредита в месяцах)
	• і - месячная процентная ставка (годовая ставка / 12 / 100)
	• k - номер месяца (от 1 до n)
	• D - ежемесячный платеж по основному долгу
	• Р_k - проценты за k-й месяц
	• А k - платеж за k-й месяц
	Т_к - платеж за к-и месяц
Сложные проценты	$S n = S 0 \times (1+i)^n$
(вклад)	где:
(ВКЛад)	
	 S_n - наращенная сумма через п периодов S 0 - первоначальная сумма вклада
	• і - процентная ставка за период (годовая ставка / 100, если
	период - год)
	• n - количество периодов (лет)
Пла чонио	$S_{n} = S_{n} \wedge (1 + i/m) \wedge (m \vee n)$
Для начисления	$S_n = S_0 \times (1 + i/m)^n (m \times n)$
процентов несколько	где:
раз в год	• m - количество начислений процентов в год
	• С капитализацией процентов (вклад пополняемый)

Если вклад	$S_n = S_0 \times (1+i)^n + P \times (((1+i)^n - 1)/i)$
пополняется на	Здесь предполагается, что Р вносится в конце каждого периода,
фиксированную	на который начисляются проценты.
сумму Р в конце	
каждого периода	

Примеры решения задач

Пример 1: Кредит с аннуитетными платежами

Условие: Иван взял в банке кредит в размере 500 000 рублей на 5 лет под 15% годовых. Каков его ежемесячный аннуитетный платеж?

Решение:

```
S=500\ 000 n=5\ \text{лет}\times 12\ \text{месяцев/год}=60\ \text{месяцев} Годовая процентная ставка =15\% Месячная процентная ставка: i=15\ /\ (12\times 100)=0.0125 A=500\ 000\times (0.0125\times (1+0.0125)^60)\ /\ ((1+0.0125)^60-1) A\approx 500\ 000\ (0.0125\ 2.107)\ /\ (2.107-1) A\approx 500\ 000\ 0.0263\ /\ 1.107 A\approx 11\ 870\ /\ 1.107 A\approx 45670\ \text{рублей}\ (\text{округлено})
```

Ответ: Ежемесячный аннуитетный платеж Ивана составляет примерно 10722.67 рублей.

Пример 2: Кредит с дифференцированными платежами

Условие: Мария

взяла кредит 200 000 рублей на 2 года под 12% годовых с дифференцированными платежами. Каков её первый и последний платежи?

Решение:

```
S=200\ 000 n=2\ года 	imes 12\ месяцев/год = 24\ месяца Годовая процентная ставка = 12\% Месячная процентная ставка: i=12\ /\ (12\times 100)=0.01 Основной долг (ежемесячно): D=200\ 000\ /\ 24\approx 8333.33 рублей Первый платеж (k=1):
```

- \times Проценты за первый месяц: Р $1 = 200~000 \times 0.01 = 2000$ рублей
- \times Первый платеж: A_1 = $8333.3\overline{3} + 2000 = 10333.33$ рублей

Последний платеж (k = 24):

- imes Остаток долга перед последним платежом: S (24 1) imes D = 200000 23 imes 8333.33 = 200000 191666.59 = 8333.41
 - imes Проценты за последний месяц: $P_24 = 8333.33 \times 0.01 = 83.33$ рублей
 - \times Последний платеж: $A_24 = 8333.\overline{3}3 + 83.33 = 8416.66$ рублей

Ответ: Первый платеж Марии составляет 10333.33 рублей, последний - 8416.66 рублей.

Пример 3: Вклад с капитализацией процентов

Условие: Петр положил в банк 100 000 рублей под 8% годовых с ежеквартальной капитализацией процентов. Какая сумма будет на его счете через 3 года?

Решение:

```
S_0 = 100\ 000

i = 8\% = 0.08 (годовая ставка)

n = 3 года

m = 4 (ежеквартальная капитализация, то есть 4 раза в год)
```

```
S_n = 100\ 000 \times (1+0.08/4)^(4\times3) S_n = 100\ 000 \times (1+0.02)^12 S_n = 100\ 000 \times (1.02)^12 S_n \approx 100\ 000 * 1.2682 S_n \approx 126\ 824 рублей
```

Ответ: Через 3 года на счете Петра будет примерно 126 824 рубля.

Пример 4: Оптимизация (упрощенный пример)

Условие: Предприниматель имеет 100 000 рублей и может вложить их в один из двух проектов. Проект А приносит 15% годовых, а проект В приносит 10% годовых. Какую максимальную прибыль он может получить за год?

Решение:

Вложить все деньги в проект А:

Прибыль = $100~000 \times 0.15 = 15~000$ рублей

Ответ: Максимальная прибыль составляет 15 000 рублей (вложив все средства в проект A). (В реальности задачи оптимизации могут быть гораздо сложнее, включать ограничения, риски и т.д.)

Задачи для самостоятельного решения

Уровень А (Простые)

- 1. Рассчитайте ежемесячный аннуитетный платеж по кредиту $200\ 000$ рублей на 2 года под 10% годовых.
- 2. Рассчитайте наращенную сумму по вкладу 50 000 рублей на 1 год под 7% годовых с ежемесячной капитализацией.
- 3. Иван взял кредит 100 000 руб. под 12% годовых. Какую сумму процентов он выплатит банку за первый месяц при дифференцированной схеме погашения?

Уровень А (Простые)

- 1. Сравните переплату по кредиту 300 000 рублей на 3 года под 14% годовых при аннуитетной и дифференцированной схемах погашения.
- 2. Вкладчик положил в банк 80 000 рублей под 9% годовых с ежеквартальной капитализацией. Какая сумма будет на его счете через 2 года?
- 3. Предприниматель планирует взять кредит на развитие бизнеса. Банк предлагает два варианта: 1) 500 000 рублей под 16% годовых на 4 года с аннуитетными платежами; 2) 500 000 рублей под 15% годовых на 4 года с дифференцированными платежами. Какой вариант выгоднее для предпринимателя и на сколько?

Уровень В (Сложные)

- 1. Человек берет ипотеку на 20 лет (240 месяцев). Первые 5 лет он платит только проценты по ставке 10% годовых. Затем он начинает выплачивать кредит аннуитетными платежами, чтобы погасить его за оставшиеся 15 лет (180 месяцев). Какой будет его ежемесячный платеж после первых 5 лет? (Сумма кредита = 2 млн.руб.)
- 2. Вкладчик ежегодно вносит на счет в банке 10 000 рублей. Процентная ставка по вкладу составляет 6% годовых. Какая сумма будет на счете вкладчика через 10 лет? (Внесение происходит в конце каждого года).
- 3. (Задача на оптимизацию): Компания рассматривает три инвестиционных проекта со следующими характеристиками:
- Проект А: Требует инвестиций 500 000 рублей, ожидаемая прибыль через год 80 000 рублей.
- Проект В: Требует инвестиций 300 000 рублей, ожидаемая прибыль через год 50 000 рублей.
- Проект С: Требует инвестиций 200 000 рублей, ожидаемая прибыль через год 35 000 рублей.

Компания имеет в наличии 800 000 рублей. Какие проекты следует выбрать, чтобы максимизировать общую прибыль через год, если проекты можно реализовывать только целиком (нельзя инвестировать часть денег в проект)?

IV. Ответы и Решения

(Простые)

- 1. 9229.73 руб.
- 2. 53635.21 руб.
- 3. 1000 руб.

(Простые)

- 1. Переплата при аннуитете 236622.48 руб., при дифференцированных 220500 руб. Дифференцированная схема выгоднее на 16122.48 руб.
- 2. 96076.89 руб.
- 3. Аннуитет: переплата ~ 179346 руб. Дифференцированные: переплата ~ 162500 руб. Дифференцированные выгоднее на ~ 16846 руб.

(Сложные)

- 1. 22244.48 руб.
- 2. 131807.95 руб.
- 3. Нужно выбрать проекты В и С. Это даст общую прибыль 85 000 рублей при инвестициях в 500 000 рублей. (Проект А не влезает полностью, а только он не самый эффективный. Два других более эффективны в рамках бюджета.)

Важно: Все расчеты выполнены с округлением. При реальных расчетах в банке результаты могут немного отличаться из-за правил округления, принятых в конкретном банке. Задачи на оптимизацию часто требуют более сложных математических методов (линейное программирование и др.) для точного решения.

VII. Задачи с параметром

Краткий справочник, основные понятия	
Параметр	Независимая переменная, значение которой фиксировано в рамках конкретной задачи, но может изменяться от задачи к задаче. Обычно обозначается буквами a, b, c, k, m, p и
	Т.Д.
Задача с параметром	Задача, в которой требуется найти значения параметра, при которых выполняется определенное условие (например, уравнение имеет определенное количество корней,

	неравенство выполняется при всех значениях переменной
D	и т.д.).
Решить задачу с	Это значит, для каждого допустимого значения параметра
параметром	указать решение задачи или доказать, что решений нет.
Основ	ные методы решения задач с параметром
	Основан на исследовании свойств уравнений, неравенств и
	функций, входящих в задачу.
Аналитический метод	Используются известные формулы, теоремы и алгоритмы
	решения уравнений и неравенств.
	Требует внимательного рассмотрения различных случаев,
	возникающих в зависимости от значения параметра.
	Нахождение дискриминанта квадратного уравнения для
	определения количества корней.
Алгоритм решения	Использование теоремы Виета для анализа знаков корней.
	Рассмотрение случаев, когда коэффициент при старшей
	степени переменной равен нулю.
	Основан на построении графиков функций, заданных в
	задаче.
Графический метод	Решение задачи сводится к анализу взаимного
	расположения графиков в зависимости от значения
	параметра.
	Позволяет визуализировать решение и часто помогает
	найти общую стратегию.
	Построение семейства прямых, зависящих от параметра.
	Построение графика функции и анализ его пересечений с
Алгоритм решения	прямой $y = a$.
	Использование графической интерпретации для решения
	неравенств.
	Используется для задач, в которых параметр и переменная
	равноправны.
	Строится график в системе координат, где по одной оси
Метод областей	откладываются значения переменной, а по другой –
(Метод координат)	значения параметра.
	Решением задачи является область на плоскости,
	удовлетворяющая заданным условиям.
	Позволяет визуализировать все возможные решения для
	различных значений параметра.
	Решение неравенств с двумя переменными, одна из которых
Алгоритм решения	– параметр.
	Нахождение значений параметра, при которых система
	уравнений имеет решение.
	1

Примеры решения задач

Пример 1: Квадратные уравнения (аналитический метод)

Условие: При каких значениях параметра а уравнение $x^2 + 2ax + a = 0$ имеет два различных корня?

Решение:

Уравнение имеет два различных корня, если его дискриминант больше нуля.

Дискриминант: $D = (2a)^2 - 4 \times 1 \times a = 4a^2 - 4a$

Решаем неравенство $4a^2 - 4a > 0$

Делим на 4: $a^2 - a > 0$ Факторизуем: a(a - 1) > 0

Решением неравенства является a < 0 или a > 1

Ответ: Уравнение имеет два различных корня при a < 0 или a > 1.

Пример 2: Линейные уравнения (аналитический метод)

Условие: При каких значениях параметра а уравнение $(a - 2)x = a^2 - 4$ имеет бесконечно много решений?

Решение:

Уравнение имеет бесконечно много решений, если оно является тождеством, т.е. выполняется при любом x.

Это возможно, если коэффициент при х равен нулю и правая часть уравнения равна нулю.

a - 2 = 0 и $a^2 - 4 = 0$

Из первого уравнения: а = 2

Проверяем второе уравнение при a = 2: $2^2 - 4 = 0$ (верно)

Ответ: Уравнение имеет бесконечно много решений при a = 2.

Пример 3: Системы уравнений (графический метод)

Условие: Найдите все значения параметра а, при которых система уравнений

$$\int y = |x|$$
$$x^2 + y^2 = a$$

имеет ровно 4 решения.

Решение:

Построим график функции y = |x|. Это две прямые, выходящие из начала координат под углом 45° к оси x.

Уравнение $x^2 + y^2 = a$ задает окружность с центром в начале координат и радиусом \sqrt{a} . (Важно: a > 0, иначе окружности не будет).

Система имеет 4 решения, если окружность пересекает график y = |x| в четырех точках. Это происходит, когда окружность проходит между началом координат и точкой пересечения прямых y=x и y=-x с самой собой в точках, отличных от начала координат.

Найдем координаты точки пересечения прямых y = x с окружностью $x^2 + y^2 = a$:

$$x^2 + x^2 = a$$
 $2x^2 = a$ $x = \sqrt{a/2}$ (Рассматриваем только положительное значение, т.к. $y = |x|$) $y = \sqrt{a/2}$

Чтобы было 4 решения, радиус окружности должен быть больше, чем расстояние от начала координат до точки ($\sqrt{(a/2)}$, $\sqrt{(a/2)}$), но меньше бесконечности. Расстояние от начала координат до ($\sqrt{(a/2)}$, $\sqrt{(a/2)}$) = $\sqrt{(a/2 + a/2)}$ = \sqrt{a} , а это и есть радиус нашей окружности, поэтому надо чтобы y = |x| касался окружности.

Если y = |x| касается окружности то $x = \sqrt{(a/2)}$, тогда $y = \sqrt{(a/2)}$. А если косается то y = |x| = x.

Из чего следует что окружность должна быть больше нуля но меньше чем а=0, значит не имеет решение.

Ответ: Система не имеет 4 решения не при каком а.

Пример 4: Функции (графический метод)

Условие: Найти все значения a, при которых функция f(x) = |x - a| + |x + a| принимает минимальное значение в точке x = 0.

Решение:

Раскрываем модуль:

Если
$$x \ge a$$
: $f(x) = (x - a) + (x + a) = 2x$
Если $-a \le x \le a$: $f(x) = -(x - a) + (x + a) = 2a$
Если $x \le -a$: $f(x) = -(x - a) - (x + a) = -2x$
Получаем кусочно-линейную функцию:

$$f(x) = \begin{cases} -2x, & x < -a \\ 2a, & -a <= x < a \\ 2x, & x >= a \end{cases}$$

Минимальное значение функция принимает на отрезке [-а, а], и это значение равно 2а.

Чтобы x = 0 было точкой минимума, необходимо, чтобы отрезок [-a, a] содержал точку x = 0. Это условие выполняется для любого a >= 0.

Кроме того, чтобы x=0 давал минимальное значение, должно быть $2a \ge 0$, а значит $a \ge 0$.

Ответ: Функция принимает минимальное значение в точке x = 0 при a >= 0.

Задачи для самостоятельного решения

Уровень А (Простые)

- 1. При каких значениях а уравнение ах = 5 имеет решение?
- 2. При каких значениях b уравнение $x^2 + bx + 4 = 0$ имеет хотя бы один корень?
- 3. При каких значениях k прямая y = kx проходит через точку (2, 4)?

Уровень А (Простые)

- 1. Найдите все значения m, при которых уравнение |x| = m x имеет ровно одно решение.
- 2. При каких значениях параметра а неравенство $x^2 + 2ax + a > 0$ выполняется для всех действительных чисел x?
- 3. Найдите все значения р, при которых система уравнений

```
C \{x + y = 5 \\ x - y = p \}
```

имеет решение, в котором x > 0 и y > 0.

Уровень В (Сложные)

- 1. Найти все значения a, при которых уравнение $\sqrt{(x-a)} = x-1$ имеет ровно один корень.
- 2. Найти все значения параметра a, при которых неравенство $(x a)^2 + (y a)^2 \le 1$ задает круг, целиком лежащий в первом квадранте.
- 3. Найти все значения параметра a, при которых уравнение sin(x) + cs(x) = a имеет решение.

Уровень В (Сложные) Задача 1 (Оптимизация производства):

Компания производит два вида продукции: А и В. Затраты на производство х единиц продукции А составляют $C_A(x) = ax^2 + bx$, а затраты на производство у единиц продукции В составляют $C_B(y) = cy^2 + dy$, где a, b, c, d – положительные параметры. Компания имеет

ограниченный бюджет B на производство обеих видов продукции. Цена одной единицы продукции A равна P_A, а цена одной единицы продукции B равна P_B. Найдите оптимальное соотношение между объемами производства продукции A и B, максимизирующее прибыль компании, и выразите его через параметры a, b, c, d, P A, P B и B.

Задача 2 (Кредит и Инфляция):

Предприниматель берет кредит в банке на сумму S под годовую процентную ставку r на n лет с аннуитетными платежами. Инфляция в стране составляет i процентов в год. Найдите зависимость реальной переплаты по кредиту (в денежных единицах на момент взятия кредита) от параметров S, r, n, i. При каком условии на параметры реальная переплата будет минимальной?

Задача 3 (Инвестиции и Риск):

Инвестор рассматривает два инвестиционных проекта: X и Y. Ожидаемая доходность проекта X составляет R_X с дисперсией риска σ_X^2 , а ожидаемая доходность проекта Y составляет X с дисперсией риска X0. Инвестор хочет сформировать портфель, вложив долю X0 в проект X1 и долю X1 в проект X2. Найдите значение параметра X3, минимизирующее дисперсию риска портфеля, если ковариация между доходностями проектов X4 и X4 равна X5 у, где X6 где X7, где X7 у, где X8 где X8 у доходностями проектов.

Задача 4 (Ценообразование):

Компания является монополистом на рынке некоторого товара. Функция спроса на товар имеет вид Q(P) = a - bP, где Q -объем спроса, P -цена товара, а а и b -положительные параметры. Издержки компании на производство Q = единиц товара составляют C(Q) = cQ + d, где c и d -положительные параметры. Найдите цену, при которой компания получит максимальную прибыль, и выразите ее через параметры a, b, c, d. Как изменится оптимальная цена, если государство введет налог в размере t на каждую единицу произведенного товара?

Задача 5 (Амортизация и Замена Оборудования):

Компания использует оборудование, которое со временем изнашивается. Стоимость обслуживания оборудования в год составляет $M(t) = at^2 + b$, где t – возраст оборудования (в годах), а а и b – положительные параметры. Новое оборудование стоит K. Компания рассматривает возможность замены старого оборудования на новое. Найдите оптимальный срок службы оборудования, минимизирующий средние годовые затраты на обслуживание и замену оборудования, и выразите его через параметры a, b, K.

Советы по решению:

• Задача 1: Составьте функцию прибыли компании как разницу между доходами и затратами. Используйте метод Лагранжа для оптимизации функции прибыли при заданном бюджетном ограничении.

- Задача 2: Найдите формулу для расчета аннуитетного платежа. Учтите, что с течением времени реальная стоимость денежных единиц снижается из-за инфляции. Выразите реальную переплату по кредиту как разницу между суммой выплаченных платежей и суммой кредита, скорректированную на инфляцию.
- Задача 3: Составьте формулу для расчета дисперсии риска портфеля. Возьмите производную дисперсии по α и приравняйте ее к нулю, чтобы найти значение α, минимизирующее риск.
- Задача 4: Составьте функцию прибыли компании как разницу между выручкой и издержками. Найдите цену, максимизирующую прибыль. Учтите, что после введения налога издержки компании

IV. Ответы и решения:

(Простые)

- 1. $a \neq 0$
- 2. $b \le -4$ или $b \ge 4$
- 3. k = 2

(Средние)

- 1. m > 0
- 2. a > 0
- 3. -5

(Сложные)

- 1. a = 0 или a >= 3/4
- 2. $0 < a <= 1/\sqrt{2}$
- 3. $-\sqrt{2} \le a \le \sqrt{2}$

Важно: Задачи с параметром требуют тщательного анализа и рассмотрения всех возможных случаев. Рекомендуется использовать различные методы решения (аналитический, графический, метод областей) для проверки полученных результатов. Не забывайте указывать все ограничения, накладываемые на параметр!

СПИСОК ЛИТЕРАТУРЫ И ИНТЕРНЕТ РЕСУРСОВ

- 1. ЕГЭ. Математика. Стереометрия. Планиметрия. Задачи с решениями / Под ред. А.Л. Семенова, И.В. Ященко.
- 2. Уравнения и неравенства, экономические задачи, задачи с параметром:
- 3. А.В. Шевкин "Текстовые задачи на ЕГЭ по математике. Профильный уровень"
- 4. Л.О. Денищева, Т.А. Иванова, Е.А. Бойченко и др. "ЕГЭ 2024. Математика. Профильный уровень. Задачи с параметром"
- 5. Мельников И.И., Сергеев И.Н. "Как решать задачи с параметрами на ЕГЭ. Математика"
- 6. Решу ЕГЭ (math-ege.sdamgia.ru).
- 7. ФИПИ (fipi.ru).
- 8. ЕГЭ по математике (ege.yandex.ru).